84 research outputs found

    Effect of Arginine and nano-hydroxyapatite application on the hypersensitivity and color change of bleached enamel : a randomized controlled clinical trial

    Get PDF
    To evaluate the effect of 2.5% Arginine and nano-hydroxyapatite (nHA) application on the post-bleaching hypersensitivity (HS) and color change in a randomized controlled trial. Sixty-four participants were randomly allocated to four groups (n=16) accor

    Medium-term health and social outcomes in adolescents following sexual assault: a prospective mixed-methods cohort study

    Get PDF
    PURPOSE: To describe medium-term physical and mental health and social outcomes following adolescent sexual assault, and examine users’ perceived needs and experiences. METHOD: Longitudinal, mixed methods cohort study of adolescents aged 13–17 years recruited within 6 weeks of sexual assault (study entry) and followed to study end, 13–15 months post-assault. RESULTS: 75/141 participants were followed to study end (53% retention; 71 females) and 19 completed an in-depth qualitative interview. Despite many participants accessing support services, 54%, 59% and 72% remained at risk for depressive, anxiety and post-traumatic stress disorders 13–15 months post-assault. Physical symptoms were reported more frequently. Persistent (> 30 days) absence from school doubled between study entry and end, from 22 to 47%. Enduring mental ill-health and disengagement from education/employment were associated with psychosocial risk factors rather than assault characteristics. Qualitative data suggested inter-relationships between mental ill-health, physical health problems and disengagement from school, and poor understanding from schools regarding how to support young people post-assault. Baseline levels of smoking, alcohol and ever drug use were high and increased during the study period (only significantly for alcohol use). CONCLUSION: Adolescents presenting after sexual assault have high levels of vulnerability over a year post-assault. Many remain at risk for mental health disorders, highlighting the need for specialist intervention and ongoing support. A key concern for young people is disruption to their education. Multi-faceted support is needed to prevent social exclusion and further widening of health inequalities in this population, and to support young people in their immediate and long-term recovery

    Osmoregulators proline and glycine betaine counteract salinity stress in canola

    Get PDF
    Salt inundation leads to increased salinization of arable land in many arid and semi-arid regions. Until genetic solutions are found farmers and growers must either abandon salt-affected fields or use agronomic treatments that alleviate salt stress symptoms. Here, field experiments were carried out to study the effect of the osmoregulators proline at 200 mg L-1 and glycine betaine at 400 mg L-1 in counteracting the harmful effect of soil salinity stress on canola plants grown in Egypt. We assessed growth characteristics, yield and biochemical constituents. Results show first that all growth characters decreased with increasing salinity stress but applied osmoregulators alleviated these negative effects. Second, salinity stress decreased photosynthetic pigments, K and P contents, whilst increasing proline, soluble sugars, ascorbic acid, Na and Cl contents. Third, application of osmoregulators without salt stress increased photosynthetic pigments, proline, soluble sugars, N, K and P contents whilst decreasing Na and Cl contents. It is concluded that the exogenously applied osmoregulators glycine betaine and proline can fully or partially counteract the harmful effect of salinity stress on growth and yield of canola.© INRA and Springer-Verlag, France 2012

    Evaluation and prediction of groundwater quality for irrigation using an integrated water quality indices, machine learning models and GIS approaches: a representative case study

    Get PDF
    Agriculture has significantly aided in meeting the food needs of growing population. In addition, it has boosted economic development in irrigated regions. In this study, an assessment of the groundwater (GW) quality for agricultural land was carried out in El Kharga Oasis, Western Desert of Egypt. Several irrigation water quality indices (IWQIs) and geographic information systems (GIS) were used for the modeling development. Two machine learning (ML) models (i.e., adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM)) were developed for the prediction of eight IWQIs, including the irrigation water quality index (IWQI), sodium adsorption ratio (SAR), soluble sodium percentage (SSP), potential salinity (PS), residual sodium carbonate index (RSC), and Kelley index (KI). The physicochemical parameters included T°, pH, EC, TDS, K+, Na+, Mg2+, Ca2+, Cl−, SO42−, HCO3−, CO32−, and NO3−, and they were measured in 140 GW wells. The hydrochemical facies of the GW resources were of Ca-Mg-SO4, mixed Ca-Mg-Cl-SO4, Na-Cl, Ca-Mg-HCO3, and mixed Na-Ca-HCO3 types, which revealed silicate weathering, dissolution of gypsum/calcite/dolomite/ halite, rock–water interactions, and reverse ion exchange processes. The IWQI, SAR, KI, and PS showed that the majority of the GW samples were categorized for irrigation purposes into no restriction (67.85%), excellent (100%), good (57.85%), and excellent to good (65.71%), respectively. Moreover, the majority of the selected samples were categorized as excellent to good and safe for irrigation according to the SSP and RSC. The performance of the simulation models was evaluated based on several prediction skills criteria, which revealed that the ANFIS model and SVM model were capable of simulating the IWQIs with reasonable accuracy for both training “determination coefficient (R2)” (R2 = 0.99 and 0.97) and testing (R2 = 0.97 and 0.76). The presented models’ promising accuracy illustrates their potential for use in IWQI prediction. The findings indicate the potential for ML methods of geographically dispersed hydrogeochemical data, such as ANFIS and SVM, to be used for assessing the GW quality for irrigation. The proposed methodological approach offers a useful tool for identifying the crucial hydrogeochemical components for GW evolution assessment and mitigation measures related to GW management in arid and semi-arid environments

    Integrated methodological framework fos assesing the risk of failure in water supply incorporating drought forecast. Case study: Andean regulated river basin

    Full text link
    [EN] Hydroclimatic drought conditions can affect the hydrological services offered by mountain river basins causing severe impacts on the population, becoming a challenge for water resource managers in Andean river basins. This study proposes an integrated methodological framework for assessing the risk of failure in water supply, incorporating probabilistic drought forecasts, which assists in making decisions regarding the satisfaction of consumptive, non-consumptive and environmental requirements under water scarcity conditions. Monte Carlo simulation was used to assess the risk of failure in multiple stochastic scenarios, which incorporate probabilistic forecasts of drought events based on a Markov chains (MC) model using a recently developed drought index (DI). This methodology was tested in the Machángara river basin located in the south of Ecuador. Results were grouped in integrated satisfaction indexes of the system (DSIG). They demonstrated that the incorporation of probabilistic drought forecasts could better target the projections of simulation scenarios, with a view of obtaining realistic situations instead of optimistic projections that would lead to riskier decisions. Moreover, they contribute to more effective results in order to propose multiple alternatives for prevention and/or mitigation under drought conditions.This study was part of the doctoral thesis of Aviles A. at the Technical University of Valencia. This research was funded by the University of Cuenca through its Research Department (DIUC) and the Municipal public enterprise of telecommunications, drinking water, sewage and sanitation of Cuenca (ETAPA) through the projects: BIdentificacion de los procesos hidrometeorologicos que desencadenan inundaciones en la ciudad de Cuenca usando un radar de precipitacion" and "Ciclos meteorologicos y evapotranspiracion a lo largo de una gradiente altitudinal del Parque Nacional Cajas". The authors also thank INAMHI and the CBRM for providing the information for this study. The authors wish to thank the Spanish Ministry of Economy and Competitiveness for its financial support through the ERAS project (CTM2016-77804-P). We thank Angel Vazquez, who helped in the programming of the multiple simulations. Also we thank to the TropiSeca project.Avilés-Añazco, A.; Solera Solera, A.; Paredes Arquiola, J.; Pedro Monzonís, M. (2018). Integrated methodological framework fos assesing the risk of failure in water supply incorporating drought forecast. Case study: Andean regulated river basin. Water Resources Management. 32(4):1209-1223. https://doi.org/10.1007/s11269-017-1863-7S12091223324Andreu J, Capilla J, Sanchís E (1996) AQUATOOL, a generalized decision-support system for water-resources planning and operational management. J Hydrol 177(3-4):269–291. https://doi.org/10.1016/0022-1694(95)02963-XAndreu J, Solera A, Capilla J, Ferrer J (2007) Modelo SIMGES para simulación de cuencas. Manual de usuario v3. 00. Universidad Politécnica de Valencia, ValenciaAndreu J, Ferrer J, Perez MA et al (2013) Drought planning and management in the Júcar River Basin, Spain. In: Schwabe K et al (eds) Drought in arid and semi-arid regions. Springer science, Dordrecht, pp 237–249. https://doi.org/10.1007/978-94-007-6636-5_13Avilés A, Solera A (2013) Análisis de sistemas de recursos hídricos de la cuenca del rio Tomebamba en Ecuador, mediante modelos estocásticos y de gestión. In: Solera A, Paredes J, Andreu J (eds) Aplicaciones de sistemas soporte a la decisión en planificación y gestión integradas de cuencas hidrográficas. Marcombo, Barcelona, España pp 51–61Avilés A, Célleri R, Paredes J, Solera A (2015) Evaluation of Markov chain based drought forecasts in an Andean Regulated River basin using the skill scores RPS and GMSS. Water Resour Manag 29(6):1949–1963. https://doi.org/10.1007/s11269-015-0921-2Avilés A, Célleri R, Solera A, Paredes J (2016) Probabilistic forecasting of drought events using Markov chain-and Bayesian network-based models: a case study of an Andean Regulated River Basin. Water 8:1–16Barua S, Ng A, Perera B (2012) Drought assessment and forecasting: a case study on the Yarra River catchment in Victoria, Australia. Aust J Water Resour 15(2):95–108. https://doi.org/10.7158/W10-848.2012.15.2Bazaraa MS, Jarvis JJ, Sherali HD (2011) Linear programming and network flows, fourth Edi. John Wiley & Sons, New JerseyBrown C, Baroang KM, Conrad E et al (2010) IRI technical report 10–15, managing climate risk in water supply systems. Palisades, NYCancelliere A, Di Mauro G, Bonaccorso B, Rossi G (2007) Drought forecasting using the standardized precipitation index. Water Resour Manag 21(5):801–819. https://doi.org/10.1007/s11269-006-9062-yCancelliere A, Nicolosi V, Rossi G (2009) Assessment of drought risk in water supply systems in coping with drought risk in agriculture and water supply systems. Advances in natural and technological hazards research 26. In: Coping with drought risk in agriculture. Springer, pp 93–109. https://doi.org/10.1007/978-1-4020-9045-5_8Chen YD, Zhang Q, Xiao M, Singh VP, Zhang S (2016) Probabilistic forecasting of seasonal droughts in the Pearl River basin, China. Stoch Environ Res Risk Assess 30(7):2031–2040. https://doi.org/10.1007/s00477-015-1174-6Gong G, Wang L, Condon L, Shearman A, Lall U (2010) A simple framework for incorporating seasonal Streamflow forecasts into existing water resource management practices. JAWRA J Am Water Resour Assoc 46(3):574–585. https://doi.org/10.1111/j.1752-1688.2010.00435.xHaro D, Solera A, Paredes J, Andreu J (2014) Methodology for drought risk assessment in within-year regulated reservoir systems. Application to the Orbigo River system (Spain). Water Resour Manag 28(11):3801–3814. https://doi.org/10.1007/s11269-014-0710-3Haro-Monteagudo D, Solera A, Andreu J (2017) Drought early warning based on optimal risk forecasts in regulated river systems: application to the Jucar River basin (Spain). J Hydrol 544:36–45. https://doi.org/10.1016/j.jhydrol.2016.11.022Hashimoto T, Loucks DP, Stedinger JR (1982) Reliability, resiliency, and vulnerability criteria. Water Resour Res 18(1):14–20. https://doi.org/10.1029/WR018i001p00014Hwang Y, Carbone GJ (2009) Ensemble forecasts of drought indices using a conditional residual resampling technique. J Appl Meteorol Climatol 48(7):1289–1301. https://doi.org/10.1175/2009JAMC2071.1Kao S-C, Govindaraju RS (2010) A copula-based joint deficit index for droughts. J Hydrol 380(1-2):121–134. https://doi.org/10.1016/j.jhydrol.2009.10.029Keyantash JA, Dracup JA (2004) An aggregate drought index: assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour Res 40(9):1–13. https://doi.org/10.1029/2003WR002610Khadr M (2016) Forecasting of meteorological drought using hidden Markov model (case study: the upper Blue Nile river basin, Ethiopia). Ain Shams Eng J 7(1):47–56. https://doi.org/10.1016/j.asej.2015.11.005Madadgar S, Moradkhani H (2013) A Bayesian framework for probabilistic seasonal drought forecasting. J Hydrometeorol 14(6):1685–1706. https://doi.org/10.1175/JHM-D-13-010.1Madadgar S, Moradkhani H (2014) Spatio-temporal drought forecasting within Bayesian networks. J Hydrol 512:134–146. https://doi.org/10.1016/j.jhydrol.2014.02.039Mahmoudzadeh H, Mahmoudzadeh H, Afshar M, Yousefi S (2016) Applying first-order Markov chains and SPI drought index to monitor and forecast drought in West Azerbaijan Province of Iran. Int J Geo Sci Environ Plan 1:44–53. 10.22034/ijgsep.2016.40669Mishra AK, Singh VP (2010) Review paper a review of drought concepts. J Hydrol 391(1-2):202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012Nalbantis I, Tsakiris G (2009) Assessment of hydrological drought revisited. Water Resour Manag 23(5):881–897. https://doi.org/10.1007/s11269-008-9305-1Ochola WO, Kerkides P (2003) A Markov chain simulation model for predicting critical wet and dry spells in Kenya: Analysing rainfall events in the kano plains. Irrig Drain 52(4):327–342. https://doi.org/10.1002/ird.094Paulo AA, Pereira LS (2007) Prediction of SPI drought class transitions using Markov chains. Water Resour Manag 21(10):1813–1827. https://doi.org/10.1007/s11269-006-9129-9Phan TD, Smart JCR, Capon SJ, Hadwen WL, Sahin O (2016) Applications of Bayesian belief networks in water resource management: a systematic review. Environ Model Softw 85:98–111. https://doi.org/10.1016/j.envsoft.2016.08.006Pouget L, Roldán T, Gómez M et al (2015) Use of seasonal climate predictions in the water sector—preliminary results from the EUPORIAS project. In: Andreu J, Solera A, Paredes J et al (eds) Drought: research and science-policy interfacing. Taylor & Francis Group, London, UK, p 247Rossi G, Cancelliere A (2013) Managing drought risk in water supply systems in Europe: a review. Int J Water Resour Dev 29(2):272–289. https://doi.org/10.1080/07900627.2012.713848Rossi G, Caporali E, Garrote L (2012) Definition of risk indicators for reservoirs management optimization. Water Resour Manag 26(4):981–996. https://doi.org/10.1007/s11269-011-9842-xSánchez S, Andreu J, Solera A (2001) Gestión de Recursos Hídricos con Decisiones Basadas en Estimación del Riesgo. Universidad Politécnica De Valencia, ValenciaSandoval-Solis S, McKinney DC, Loucks M (2011) Sustainability index for water resources planning and management. J Water Resour Plan Manag 137(5):381–390. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000134Sankarasubramanian A, Lall U, Devineni N, Espinueva S (2009) The role of monthly updated climate forecasts in improving intraseasonal water allocation. J Appl Meteorol Climatol 48(7):1464–1482. https://doi.org/10.1175/2009JAMC2122.1Shukla S, Wood AW (2008) Use of a standardized runoff index for characterizing hydrologic drought. Geophys Res Lett 35(2):1–7. https://doi.org/10.1029/2007GL032487Staudinger M, Stahl K, Seibert J (2014) A drought index accounting for snow. Water Resour Res 50(10):7861–7872. https://doi.org/10.1002/2013WR015143Sveinsson O, Salas JD, Lane W, Frevert D (2007) Stochastic analysis, modeling, and simulation (SAMS) version 2007, user’s manual. Computing Hydrology Laboratory, Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, ColoradoSvoboda M, Hayes M, Wilhite D, Tadesse T (2004) Recent advances in drought monitoring. Drought Mitig Cent Fac Publ 6:6Vogel RM (2017) Stochastic watershed models for hydrologic risk management. Water Secur 1:28–35. https://doi.org/10.1016/j.wasec.2017.06.001Wilks DS (2011) Statistical methods in the atmospheric sciences, third edit. Academic Press, USAWorld Meteorological Organization (2012) Standardized precipitation index user Guide (M. Svoboda, M. Hayes and D. Wood). (WMO - No. 1090), Geneva

    A talajfelvételezés és osztályozás néhány kérdése az EAK-ban

    Get PDF

    Fiscal regime uncertainty, risk aversion, and exhaustible resource depletion: OIES paper: EE3

    No full text
    How does uncertainty about future rent tax liability affect the competitive supply pattern for an exhaustible resource? Historically, changes in tax and regulatory clauses have been a frequent occurrence in the Petroleum industry, and appear to have contributed to the climate of uncertainty about future rent appropriation. This paper develops a generally applicable framework to tackle this question. The analysis modifies the classic Hotelling problem of exhaustible resource management to embody producer risk-aversion in terms of the underlying portfolio allocation behaviour of firms' owners, using a simple mean-variance approach. The construct is then used to derive equilibrium price profiles for the resource under a number of different methods of characterizing the risk, including a "continuous" variety under which mean-variance analysis gives general results. By and large, the results suggest that this type of uncertainty promotes excessively rapid depletion. Important exceptions arise where rent variability (i) does not increase the more distant the horizon; and (ii) exhibits a negative correlation with dominant sources of risk in investors' portfolios

    Capacity constraints and the production of nonrenewable resources: OIES paper: EE5

    No full text
    This paper examines the extent to which the use of a fixed input in the extraction process for a nonrenewable resource affects a number of common results in depletion theory. A multi-deposit model is constructed where the extraction technology requires capital equipment that is deposit-specific and has no resale value once installed. It is shown that for each deposit there is an equilibrium capacity level, which is built up all at once or gradually, depending on the adjustment costs associated with installing the equipment and the heterogeneity of deposits. The aggregate extraction rate is constant over an initial period of time. The paper goes on to derive a number of results for this model. Firstly, different quality deposits are always exploited simultaneously, although better quality deposits are exhausted first. Secondly, higher discount rates entail quicker depletion only if the resource is sufficiently scarce relative to capital equipment. Thirdly, a programme that is optimal from a social viewpoint can in principle be reproduced without intervention in a perfectly competitive market. Fourthly, fiscal instruments generally discourage investment, and consequently overconserve the resource, unless tax writeoff provisions or depletion allowances are in force. Fiftly, exploitation under monopoly and symmetrically placed Cournot-Nash producers is generally more conservationist than the social optimum, but the distortion is negligible if the number of producers is sufficiently large. Finally, allowing for a variable input in the extraction process or a positive rate of depreciation for capital equipment is shown to quality the results by restoring the more common results that the aggregate extraction rate is always a strictly declining function of time

    Efficiency of trade equilibria in the world oil market: OIES paper: EE6

    No full text
    This paper formulates a trading game in a productive natural resource like oil. Though simple, the model developed here will highlight the role of binding long-term agreements and will show that in their absence equilibria are inefficient. Clifford and Crawford (1987) have recently emphasized this point in the context of trade in natural resources. A related issue to which I draw attention here is that of the dynamic inconsistency or “subgame imperfection” of precommitment equilibria
    corecore