17 research outputs found

    Role of Intracoronary Imaging in Acute Coronary Syndromes

    Get PDF
    Intravascular imaging with optical coherence tomography (OCT) and intravascular ultrasound provides superior visualization of the culprit plaques for acute coronary syndromes (ACS) compared with coronary angiography. Combined with angiography, intravascular imaging can be used to instigate ‘precision therapy’ for ACS. Post-mortem histopathology identified atherothrombosis at the exposed surface of a ruptured fibrous cap as the main cause of ACS. Further histopathological studies identified intact fibrous caps and calcified nodules as other culprit lesions for ACS. These plaque types were subsequently also identified on intravascular imaging, particularly with the high-resolution OCT. The less-common non-atherothrombotic causes of ACS are coronary artery spasm, coronary artery dissection, and coronary embolism. In this review, the authors provide an overview of clinical studies using intravascular imaging with OCT in the diagnosis and management of ACS

    Biological markers of oxidative stress: Applications to cardiovascular research and practice

    Get PDF
    Oxidative stress is a common mediator in pathogenicity of established cardiovascular risk factors. Furthermore, it likely mediates effects of emerging, less well-defined variables that contribute to residual risk not explained by traditional factors. Functional oxidative modifications of cellular proteins, both reversible and irreversible, are a causal step in cellular dysfunction. Identifying markers of oxidative stress has been the focus of many researchers as they have the potential to act as an “integrator” of a multitude of processes that drive cardiovascular pathobiology. One of the major challenges is the accurate quantification of reactive oxygen species with very short half-life. Redox-sensitive proteins with important cellular functions are confined to signalling microdomains in cardiovascular cells and are not readily available for quantification. A popular approach is the measurement of stable by-products modified under conditions of oxidative stress that have entered the circulation. However, these may not accurately reflect redox stress at the cell/tissue level. Many of these modifications are “functionally silent”. Functional significance of the oxidative modifications enhances their validity as a proposed biological marker of cardiovascular disease, and is the strength of the redox cysteine modifications such as glutathionylation. We review selected biomarkers of oxidative stress that show promise in cardiovascular medicine, as well as new methodologies for high-throughput measurement in research and clinical settings. Although associated with disease severity, further studies are required to examine the utility of the most promising oxidative biomarkers to predict prognosis or response to treatment

    β3 adrenergic agonism: A novel pathway which improves right ventricular‐pulmonary arterial hemodynamics in pulmonary arterial hypertension

    No full text
    Abstract Efficacy of therapies that target the downstream nitric oxide (NO) pathway in pulmonary arterial hypertension (PAH) depends on the bioavailability of NO. Reduced NO level in PAH is secondary to “uncoupling” of endothelial nitric oxide synthase (eNOS). Stimulation of β3 adrenergic receptors (β3 ARs) may lead to the recoupling of NOS and therefore be beneficial in PAH. We aimed to examine the efficacy of β3 AR agonism as a novel pathway in experimental PAH. In hypoxia (5 weeks) and Sugen hypoxia (hypoxia for 5 weeks + SU5416 injection) models of PAH, we examined the effects of the selective β3 AR agonist CL316243. We measured echocardiographic indices and invasive right ventricular (RV)–pulmonary arterial (PA) hemodynamics and compared CL316243 with riociguat and sildenafil. We assessed treatment effects on RV–PA remodeling, oxidative stress, and eNOS glutathionylation, an oxidative modification that uncouples eNOS. Compared with normoxic mice, RV systolic pressure was increased in the control hypoxic mice (p < 0.0001) and Sugen hypoxic mice (p < 0.0001). CL316243 reduced RV systolic pressure, to a similar degree to riociguat and sildenafil, in both hypoxia (p < 0.0001) and Sugen hypoxia models (p < 0.03). CL316243 reversed pulmonary vascular remodeling, decreased RV afterload, improved RV–PA coupling efficiency and reduced RV stiffness, hypertrophy, and fibrosis. Although all treatments decreased oxidative stress, CL316243 significantly reduced eNOS glutathionylation. β3 AR stimulation improved RV hemodynamics and led to beneficial RV–PA remodeling in experimental models of PAH. β3 AR agonists may be effective therapies in PAH

    Algorithmic Approach for Optical Coherence Tomography–Guided Stent Implantation During Percutaneous Coronary Intervention:Imaging in Intervention

    No full text
    Š 2018 Elsevier Inc. Intravascular imaging plays a key role in optimizing outcomes for percutaneous coronary intervention (PCI). Optical coherence tomography (OCT) utilizes a user-friendly interface and provides high-resolution images. OCT can be used as part of daily practice in all stages of a coronary intervention: baseline lesion assessment, stent selection, and stent optimization. Incorporating a standardized, algorithmic approach when using OCT allows for precision PCI

    Redox-dependent regulation of the Na+-K+ pump: new twists to an old target for treatment of heart failure

    Get PDF
    By the time it was appreciated that the positive inotropic effect of cardiac glycosides is due to inhibition of the membrane Na-K pump, glycosides had been used for treatment of heart failure on an empiric basis for ~200years. The subsequent documentation of their lack of clinical efficacy and possible harmful effect largely coincided with the discovery that a raised Na concentration in cardiac myocytes plays an important role in the electromechanical phenotype of heart failure syndromes. Consistent with this, efficacious pharmacological treatments for heart failure have been found to stimulate the Na-K pump, effectively the only export route for intracellular Na in the heart failure. A paradigm has emerged that implicates pump inhibition in the raised Na levels in heart failure. It invokes protein kinase-dependent activation of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) and glutathionylation, a reversible oxidative modification, of the Na-K pump molecular complex that inhibits its activity. Since treatments of proven efficacy reverse the oxidative Na-K pump inhibition, the pump retains its status as a key pharmacological target in heart failure. Its role as a target is well integrated with the paradigms of neurohormonal abnormalities, raised myocardial oxidative stress and energy deficiency implicated in the pathophysiology of the failing heart. We propose that targeting oxidative inhibition of the pump is useful for the exploration of future treatment strategies. This article is part of a Special Issue entitled "NaRegulation in Cardiac Myocytes"

    Optical Coherence Tomography Characterization of Coronary Lithoplasty for Treatment of Calcified Lesions : First Description

    No full text
    Objectives This study sought to determine the mechanistic effects of a novel balloon-based lithoplasty system on heavily calcified coronary lesions and subsequent stent placement using optical coherence tomography (OCT). Background The Shockwave Coronary Rx Lithoplasty System (Shockwave Medical, Fremont, California) delivers localized, lithotripsy-enhanced disruption of calcium within the target lesion (i.e., lithoplasty) for vessel preparation before stent implantation. Methods We analyzed OCT findings in 31 patients in whom lithoplasty was used to treat severely calcified stenotic coronary lesions. Results After lithoplasty, intraplaque calcium fracture was identified in 43% of lesions, with circumferential multiple fractures noted in >25%. The frequency of calcium fractures per lesion increased in the most severely calcified plaques (highest tertile vs. lowest tertile; p = 0.009), with a trend toward greater incidence of calcium fracture (77.8% vs. 22.2%; p = 0.057). Post-lithoplasty, mean acute area gain was 2.1 mm2, which further increased with stent implantation, achieving a minimal stent area of 5.94 Âą 1.98 mm2 and mean stent expansion of 112.0 Âą 37.2%. Deep dissections, as part of the angioplasty effect, occurred in 13% of cases and were successfully treated with stent implantation without incidence of acute closure, slow flow/no reflow, or perforation. Conclusions High-resolution imaging by OCT delineated calcium modification with fracture as a major mechanism of action of lithoplasty in vivo and demonstrated efficacy in the achievement of significant acute area gain and favorable stent expansion
    corecore