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Clinical Syndromes

Historically, the first descriptions of atherosclerotic lesions underlying 
acute coronary syndromes (ACS) were provided by post-mortem studies.1–3 
Intravascular ultrasound (IVUS) and optical coherence tomography (OCT) 
enable in vivo visualization of culprit lesions for ACS. IVUS and OCT 
generate high-resolution images of the coronary artery that help delineate 
the pathogenesis of atherosclerosis, specifically the major contributors 
for atherothrombotic events leading to unstable angina, MI, and sudden 
cardiac death. This review summarizes the data on the common 
atherothrombotic and non-atherothrombotic causes of ACS. We discuss 
how intravascular imaging may be used to optimize the outcomes of 
percutaneous coronary intervention (PCI) in ACS.

Plaque Rupture, Plaque Erosion, and Calcified 
Nodules: Histopathological Insights
Atherosclerotic plaques with a disrupted fibrous cap (ruptured or eroded) 
and eruptive calcified nodules can lead to ACS. In a large post-mortem 
study of 442 individuals with sudden cardiac death, acute thrombotic events 
were responsible for 234 (53%) of the deaths.4 Three culprit phenotypes 
accounted for most cases: ruptured fibrous caps (RFCs; 35%), intact fibrous 
caps (IFCs; 35%), and calcified nodules (5%).4 The pathophysiology of these 
three substrates of ACS is briefly reviewed below.

Pathophysiology of Ruptured Fibrous Caps
Fatty streaks are the initial atherosclerotic substrate. They are made up of 
foam cells that are deposited beneath the endothelium, and eventually 
progress to fibroatheromas. Thin cap fibroatheromas (TCFAs) can rupture 
as a result of biomechanical forces that are generated by shear stress and 
turbulent blood flow.5,6 In addition to the biomechanical stress, 
inflammatory processes, driven primarily by activated macrophages, that 
release proteases can degrade the thin cap and contribute to the rupture 
of the thin fibrous cap.7 The most vulnerable region in the fibrous cap is 
the shoulder region, which is where the normal tissue meets the 
atherosclerotic plaque.7 Ruptures usually occur in the shoulder region at 
rest and either in the shoulder region or the mid-fibrous cap during 
exercise.8

Microcalcification (~10 μm in size) is generated by necrotic macrophages 
or smooth muscle cells. Microcalcification is thought to make plaques 
vulnerable to rupture under high radial strain because it can act as a nidus 
for debonding of the fibrous cap.6,9,10 Rupture of the fibrous cap leads to 
exposure of the necrotic core formed within the plaque to the intravascular 
milieu. The necrotic core is highly thrombogenic and its exposure leads to 
the release of tissue factor, which acts as an intermediary for thrombus 
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formation.7,11 This cascade of events leads to the formation of the red 
thrombus superimposed on RFCs, which is primarily composed of fibrin 
and red blood cells.12

Pathophysiology of Intact Fibrous Caps
In IFCs there is a communication between the luminal thrombus and 
intimal wall (with proteoglycans acting as the tissue–thrombus interface) 
that may lead to coronary obstruction.7,13 IFCs are non-ruptured 
fibroatheromas that are mostly composed of type III collagen; in 
comparison, RFCs mostly contain type I collagen.14 Plaques with IFCs can 
cause ACS in healthy young females and smokers.15 

In addition to collagen composition, IFCs and RFCs can be distinguished 
by the distinct patterns of vascular remodeling they are associated with. 
Negative remodeling is defined as a decrease in the vessel diameter 
distal to the culprit lesion of ACS, whereas positive remodeling is an 
increase in the diameter of the vessel. IFCs are mostly associated with 
negative remodeling and RFCs are associated with positive remodeling.16 
On histopathological examination, downstream embolization of thrombi 
to the microvasculature of the coronary arteries in IFC-ACS is a common 
finding, and IFCs are more likely to cause embolization than RFCs (71% 
versus 42%; p=0.01).13

Pathophysiology of Calcified Nodules
On histology, eruptive calcified nodules appear as microthrombi around a 
nodule that is protruding through the plaque surface, and calcified 
nodules are the least common atherothrombotic cause of ACS.4 The exact 
pathogenic mechanism of calcified nodules is not known, but activated 
macrophages can deposit large amounts of calcium, which can eventually 
fracture due to cyclic torsion of the artery to form a calcific protruding 
nodule.12 This calcification is distinct from the microcalcification observed 
in RFCs and IFCs and is usually seen in the vasculature with high flexion 
stress, such as in the mid-segments of the right coronary or left anterior 
descending arteries.17 

Turbulent flow creates small nodules surrounded by fibrin on the surface of 
the nodule and, over time, these nodules grow through the fibrin 
meshwork, forming an eruptive calcified nodule.12 Eccentric calcification 

and eruptive calcified nodules disrupt the coronary endothelium, activating 
platelets in the epicardial coronary vessels, especially in older men.3

Intravascular Imaging in ACS
Angioscopy, IVUS, near-infrared spectroscopy, and near-infrared 
fluorescence may be used for imaging RFCs; however, OCT can most 
reliably identify culprit plaques with RFC.18 OCT uses near-infrared light to 
penetrate the vessel wall, producing cross-sectional images while blood is 
flushed with contrast. The infrared light in OCT has a wavelength of 1.3 μm, 
whereas the wavelength of the ultrasound wave in IVUS is 40 μm; therefore, 
IVUS provides lower resolution than OCT.19 Each modality is unique in its 
ability to visualize coronary lesions with different characteristics. 

OCT provides detailed definition of the superficial structures because the 
depth of light penetration into the vessel wall is 1–2 mm, whereas IVUS 
can image deeper structures because the penetration depth of ultrasound 
waves is up to 6 mm. Thus, OCT and IVUS can be complementary, and 
hybrid imaging using both modalities in one catheter has attracted 
attention.19 Based on a total of 17 studies in 6,244 patients presenting with 
ACS (Supplementary Material Table 1), OCT revealed that 3,521 patients 
had plaques with RFC, 2,203 had plaques with IFC, and 316 had calcified 
nodules. Overall, these data are consistent with post-mortem 
histopathological studies.

Plaques with Ruptured Fibrous Caps on OCT
ACS due to plaques with RFC (Figure 1) portends a worse prognosis than 
plaques with IFC.20,21 RFCs occur in TCFAs.22–24 An OCT-based study 
indicated that patients with ACS due to ruptured TCFAs were more likely 
to have lesions in the proximal segments of the three major coronary 
arteries.25 Another OCT-based study in patients without ACS identified 
that TCFAs in these patients did not have a particular pattern of 
distribution.26 TCFAs are the most common pathological precursor for 
RFCs, but are associated with a relatively low risk of ST-elevation MI 
(STEMI) and sudden cardiac death.27,28 In addition, a study using OCT 
found that patients with lipid-rich plaques were at increased risk of 
cardiac events, especially if the lipid-rich plaques were longer, wider, and 
caused higher degrees of stenosis.29 

Plaques can destabilize without presenting clinically if the thrombus is not 
completely flow limiting, in which case the plaques can undergo normal 
healing after thrombus resolution.30,31 OCT can identify healed RFCs by 
visualizing layers with different optical density.32,33 Patients with stable 
angina have a significantly higher number of healed RFCs than patients 
with recurrent ACS (51.4% versus 75%; p=0.001), which can signify 
abnormal healing in patients with recurrent ACS compared with patients 
with stable ischemic heart disease.34

RFCs tend to be located in the proximal and middle segments of TCFAs 
(80.7% versus 19.3% in the distal segment).35 RFCs in the distal segment of 
TCFAs are associated with a larger thrombus volume (4.50 versus 2.02 
mm3; p=0.027) and a higher incidence of no reflow (31.7% versus 12.8%; 
p=0.003).35 Previous studies using OCT and IVUS found that patients with 
diabetes were more prone to plaques with RFC than those without 
diabetes; however, no consistent association between the frequency of 
plaque rupture and diabetes was observed in larger studies.36–38 OCT-
based assessment has identified a relationship between ACS and the 
circadian rhythm. ACS is most likely to occur at 9 am, with the risk of RFCs 
increasing between 6 am and 11.59 am (OR 2.13; p=0.002), as well as 
between 12 pm and 5.59 pm (OR 2.10; p=0.005) compared with the 
interval between 12 am and 5.59 am.39 These results only apply on 

Figure 1: Acute Coronary Syndrome Due to Plaque With 
Ruptured Fibrous Cap in the Right Coronary Artery

A–C: Thrombus detected adjacent to a cavity with ruptured fibrous cap on optical coherence 
tomography. The empty cavity on optical coherence tomography corresponds to the ulcerated 
plaque on angiography. B: Arrows demonstrate the site of ruptured fibrous cap. C: Dashed arrows 
indicate external elastic lamina.
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weekdays (p=0.01), supporting the catecholamine-surge hypothesis as an 
inciting event in the pathogenesis of RFCs. The same study found no 
circadian rhythm for ACS secondary to IFCs and calcified nodules.39

Plaques with Intact Fibrous Caps on OCT
IFCs visualized with OCT can be placed into two categories: ‘definite’ or 
‘probable’ culprit plaques with IFC.40 A luminal thrombus in contact with a 
visualized plaque is considered a definite plaque with IFC, whereas an 
irregular lumen without a thrombus is considered a plaque with probable 
IFC. A culprit plaque is also considered probable IFC if it contains a 
thrombus without superficial calcification adjacent to the thrombus.41 IFCs 
are less likely to be associated with TCFAs than RFCs and are more likely 
to form in the left anterior descending artery and equally likely to form in 
the circumflex artery compared with plaques with RFCs, whereas plaque 
rupture is more common than IFCs in the right coronary artery.24 Both IFCs 
and RFCs tend to occur in the proximal/middle segments of the coronary 
arteries.24 RFCs portend an increased risk of multivessel disease and are 
more likely to be associated with an initial Thrombolysis in Myocardial 
Infarction (TIMI) flow ≤1, whereas IFCs are associated with higher-grade 
TIMI flows.24,42

On OCT, IFCs tend to have less diameter stenosis, lower lipid content, 
thicker caps, smaller lipid arcs, and less calcification than RFCs.36,43,44 IFCs 
form near branching areas in younger female patients without cardiovascular 
risk factors.36,43 Disruption of the laminar flow is thought to play a role 
because branching areas are strongly correlated with IFC formation.45 OCT-
based studies suggest that neutrophils and CD8+ lymphocytes activated in 
response to transition from the laminar to turbulent flow may lead to 
endothelial damage and the formation of IFCs.43,45

IFCs that manifest as ACS are associated with more lipid-rich plaques, 
macrophage accumulation, and calcification in patients presenting with 
TIMI flow ≤1.20 Compared with non-lipid-rich plaques, lipid-rich plaques, 
defined as a maximum lipid arc >90° and lipid length >1 mm, were 
associated with higher rates of cardiac death and target vessel 
revascularization in ACS due to plaques with IFC at a medium follow-up of 
21 months (p=0.002).20 Macrophage infiltration causes IFCs to become 
unstable, resulting in more negative outcomes, including sudden cardiac 
death and target vessel revascularization at 2.5 years.46

In a single-center non-randomized uncontrolled study of patients with 
ACS secondary to OCT-defined erosion (n=55), patients with residual 

diameter stenosis <70% on coronary angiography were treated with 
antithrombotic therapy without stenting.47 Manual thrombectomy was 
performed prior to OCT acquisition in 46 (83.6%) patients, 35 patients 
received glycoprotein IIb/IIIa inhibitors plus aspirin, and all patients 
received ticagrelor.47 Of the 55 patients, 53 completed follow-up at 12 
months, with no major adverse cardiac events observed in 49 (92.5%).47 
Three patients (5.7%) needed revascularization with stenting due to stable 
angina, and one patient (1.9%) had gastrointestinal bleeding.48 Most 
patients (52 of 53) completed further follow-up at a median of 4.8 years, 
with no incidence of death, MI, stroke, bypass surgery, or heart failure 
observed.49 Eleven patients (21.1%) underwent elective target lesion 
revascularization during the follow-up period.49 On OCT, there was a 
larger reduction in the thrombus volume from baseline to 1 month in 41 
patients who did not undergo revascularization compared with the 11 
patients who underwent elective revascularization (95% versus 45%; 
p=0.001).49 The results of this study warrant a randomized controlled 
study to assess whether a no-stenting approach is optimal in treating 
patients with IFC-ACS.49

Calcified Nodules on OCT
Calcified nodules can be classified into two groups: eruptive calcified 
nodules and calcified protrusions.50 Eruptive calcified nodules are defined 
as calcified nodules with a compromised covering fibrous layer that can 
cause obstruction of the lumen. Calcified protrusion is a calcific mass that, 
unlike eruptive nodules, is covered by a smooth leading edge that does 
not break through the fibrous surface of the plaque (Figure 2).50 

Superficial calcified sheets are calcific plates without eruption into the 
lumen that are organized in a sheet-like pattern. A working hypothesis is 
that superficial calcified sheets may progressively evolve to calcified 
nodules and eruptive calcified nodules because of fractures that are 
generated due to the ongoing impact of cyclic mechanical forces.

Eruptive calcified nodules with a disrupted fibrous cap are associated with 
a sevenfold increase in the risk of death and MI compared with calcified 
protrusions with an intact fibrous cap.51 Eruptive calcified nodules are 
mostly observed in the middle segment of the right coronary artery, likely 
due to particular local flow dynamics and excessive hinge movement of 
the artery. Thrombi on eruptive nodules tend to be red, whereas thrombi 
associated with superficial sheets are commonly white, composed of 
fibrin and platelets.50,52 It is unclear whether calcified sheets are merely 
associated with thrombi or play a causative role in their formation.

Figure 2: Calcified Nodule

A–C: Calcific protrusion in the mid-segment of the right coronary artery covered by an intact fibrous surface.
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The physical properties of calcified nodules make them challenging to 
treat. Compared with IFCs and RFCs, calcified nodules are associated 
with smaller stent areas because the eccentric rigidity of nodules impedes 
symmetric stent expansion.53 Eruptive nodules are associated with an 
increase in procedural complications, such as stent edge dissection and 
stent malapposition, and calcific sheets are associated with the smallest 
average post-stent area because of the often inadequate lesion 
preparation in the context of ACS.54 Small stent diameter and area 
continue to limit the effectiveness of PCI, and atherectomy may be 
needed to optimize outcomes in calcified lesions. As atherectomy is 
contraindicated in thrombotic lesions in ACS, intravascular lithotripsy 
could be considered because it uses a different mechanism to fracture 
the calcium; nevertheless, studies on the safety and efficacy of 
intravascular lithotripsy in patients presenting with ACS are warranted.55

Utility of OCT to Guide Percutaneous 
Coronary Intervention in ACS
In addition to the diagnostic utility of OCT in differentiating RFCs from IFCs 
and eruptive calcified nodules, OCT can be useful in determining vessel 
size, plaque structure and burden, which could be useful information in 
performing PCI in patients with ACS.

Although the following OCT studies have been limited due to  retrospective 
design, lack of long-term clinical outcome, and modest differences, they 
help illustrate culprit plaque morphology in ACS. A randomized study of 141 
patients presenting with STEMI found that manual thrombectomy did not 
improve the effective flow or minimum stent area, whereas a retrospective 
OCT-based study reported a relationship between post-thrombectomy 
residual thrombus and the extent of microvascular dysfunction.23,56 A 2:1 
propensity-matched, prospective cohort study found a larger minimum 
lumen diameter in 214 patients with STEMI treated with pre- and post-
stenting OCT guidance compared with 428 patients treated by angiographic 
guidance only (mean [±SD] diameter 2.99 ± 0.48 versus 2.79 ± 0.47 mm; 
p<0.0001).57 OCT guidance led to higher post-PCI fractional flow reserve 
compared with angiographic guidance in 240 patients presenting with non-
STEMI (0.94 ± 0.04 versus 0.92 ± 0.05; p<0.005).58 A retrospective analysis 
of 11,731 patients in South Korea’s AMI Registry Database included 2,659 
patients who were treated with intravascular imaging guidance (22.7%), 
with IVUS used in 2,333 (19.9%) patients and OCT in 277 (2.4%). Compared 
with the angiography guidance cohort, patient-oriented composite 
endpoints of all-cause death, MI, and revascularization were lower in the 
intravascular imaging cohort (7.7% versus 5.9%, respectively; HR 0.74; 95% 
CI [0.60–0.92]; p=0.006).59

Utility of Intravascular Ultrasound to Guide 
Percutaneous Coronary Intervention in ACS
IVUS has a lower resolution than OCT in identifying microstructures (necrotic 
core, fibrous cap, erosions) and thrombi; thus, its utility is overall less in ACS 
compared with OCT, and so this review has primarily focused on the utility 
of OCT in ACS. Nonetheless, IVUS can be useful in ACS when an alternative 
etiology apart from plaque disruption leads to the clinical manifestation. For 
example, a retrospective study examining 38 patients presenting with MI 
showed that culprit lesions in the infarct-related artery are distinct from non-
culprit lesions in the same artery and plaques in a non-infarct-related 
artery.60 In that study, 16 (42.1%) patients presented with STEMI.

Thrombi were more common in culprit plaques than in infarct-related artery 
non-culprit plaques or non-infarct-related artery plaques.60 The frequency of 
ruptured/dissected plaques was similar in all three locations. Culprit lesions 
were longer, had larger external elastic membrane and plaque plus media 

cross-sectional area but smaller cross-sectional area, and more often 
exhibited positive remodeling than did infarct-related artery non-culprit 
plaques and non-infarct-related artery plaques.60 There was a trend for 
culprit plaques to be less eccentric than non-culprit plaques (mean [±SD] 0.4 
± 0.3 mm2, 0.3 ± 0.2 mm2, and 0.3 ± 0.3 mm2, respectively; p=0.08). The two 
control groups (i.e. the non-culprit plaques in the infarct-related artery and 
the non-infarct-related artery plaques) were similar.60

Utility of Coronary Physiology to Guide 
Percutaneous Coronary Intervention in ACS
Coronary physiology is an important tool in guiding the management of 
patients with ACS.61 In STEMI there is usually no need for assessment of 
the culprit vessel.61 The non-culprit vessels can be assessed with 
physiology, and flow-limiting lesions treated with intravascular imaging-
guided PCI.61 In patients with non-STEMI, physiology can be combined 
with intracoronary imaging, especially for complete functional 
revascularization.61 Finally, intracoronary physiology is paramount in the 
assessment of microvascular dysfunction during ACS.61

Non-Atherosclerotic Causes of ACS
ACS is most commonly secondary to atherosclerotic lesions; nevertheless, 
rarer, non-atherosclerotic etiologies can also cause ACS, including 
spontaneous coronary artery dissection (SCAD), coronary artery spasm, 
and coronary embolism. In this section we review these conditions and 
discuss the role of OCT in their evaluation.

SCAD is the non-iatrogenic, non-traumatic, often asymptomatic separation 
of the coronary vessel wall that mostly underlies ACS in middle-aged 
women (i.e. between 44 and 55 years of age).62,63 The pathophysiology 
involves an inciting event (i.e. rupture of the vasa vasorum) that disrupts 
the vessel wall, leading to the formation of hematoma.56 Separation can 
occur at the proximal edge of the hematoma, but can also occur at 
random because blood travels through the dissection plane with minimal 
resistance. Dissection can extend in either direction, with the mean length 
of dissection exceeding 45 mm on angiography.64 Although rupture of the 
vasa vasorum is considered the inciting event, visualization with OCT has 
shown no difference in the density of the vasa vasorum in the healthy and 
dissected portions of the vessel.65

All cases of SCAD involve the formation of a false lumen that may compress 
the true lumen and present as angina, cardiogenic shock, or sudden cardiac 
death.63,66 SCAD can be classified as three subtypes. Type I SCAD appears 
as contrast staining in the arterial wall and is associated with a radiolucent 
lumen, making angiography sufficient for the diagnosis.63 Type II SCAD is the 
most common subtype, and involves diffuse stenosis of variable length and 
severity (Figure 3). Affected areas appear as a sudden change from a 
normal to narrow diameter. Type III SCAD is <20 mm in length.63

Type II and III SCAD require OCT and IVUS imaging for diagnosis. After 
vasodilators are given to exclude vasospasm, visualization with OCT 
provides a clear image of the intimal tears, intraluminal thrombi, false 
lumen, and hematoma; however, if the hematoma extends deeper into 
the vessel wall, OCT will not capture the entire structure due to limited 
penetration depth.67 Nevertheless, OCT should be used sparingly to 
diagnose SCAD because contrast injection can hydraulically propagate 
the dissection.63 With IVUS there is less risk of propagation, and the entire 
hematoma can be visualized. Nevertheless, angiography and IVUS are 
associated with increased risks of intimal tearing and extension of the 
dissection and should be performed carefully and with meticulous 
technique.
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SCAD is usually treated with conservative medical therapy and lifestyle 
modifications; nevertheless, revascularization with PCI or bypass may be 
needed in unstable patients. In these cases, IVUS is used to guide entry 
into the true lumen and deliver the stent. Longer stents (5–10 mm longer 
than the lesion) are used to avoid propagation of the dissection when 
deployed.63 A distal stent may be deployed first, followed by a proximal 
stent to cover the segments with SCAD to prevent propagation.68

Coronary Artery Spasm
Coronary artery spasm can occur in healthy or diseased segments of 
coronary arteries.69 Smokers and adults aged between 40 and 70 years 
are at an increased risk of developing spasm.70 Coronary vasospasm is 
included in the differential diagnosis if a patient presents with MI and non-
obstructive coronary arteries.71,72 Studies using intravascular imaging in 
patients with vasospastic angina and unstable angina have indicated that 
patients with spasm tend to have less plaque burden, more negative 
remodeling, fewer TCFAs, and cores with less nectoric features.73 On OCT 
imaging in patients presenting with vasospastic angina, luminal irregularity 
(which appears as bumping of the intima) was observed (Figure 4).74 Of 
note, in one-quarter of the spastic sites there were erosions with 
thrombus, indicating that erosion could be a secondary pathology in 
patients with vasospasm.75 Thus, antiplatelet therapy should be 
considered in patients presenting with vasospastic angina to prevent the 
risk of thrombus and embolization.

Coronary Artery Embolism
Coronary artery embolism is underdiagnosed and leads to preventable 
deaths. It is estimated that coronary emboli are responsible for 3% of all 
cases of ACS.76,77 The embolized material can be thrombus (Figure 5), 
tumor, air, vegetation, or foreign material, all of which can manifest as an 
embolus that obstructs blood flow to the myocardium.78

Coronary emboli can be direct, paradoxical, or iatrogenic.78 An embolus 
that forms within the left side of the heart is considered a direct embolus, 
whereas a paradoxical embolus forms in the deep veins of the leg.78 
Paradoxical emboli enter the right heart, cross through a defect in the 
interventricular septum, and can obstruct the coronary vasculature. 
Iatrogenic emboli may occur during PCI if air enters into the arterial 
structures and can precipitate obstruction of blood flow.71 Patients with 
thrombophilia, AF, valvular disease, patent foramen ovale, infective 
endocarditis, and non-bacterial thrombotic endocarditis are predisposed 
to coronary emboli.78 Appropriate diagnosis and management of these 
underlying conditions can reduce the risk of future coronary emboli in 
these patients.

Coronary embolism appears as a heavy thrombus burden with an 
abrupt occlusion on angiography.76,79 If the occlusion happens before 
the major branches, several coronary territories can become ischemic. 
The unaffected vessels look normal and will not have collateral 

Figure 3: Spontaneous Coronary Artery Dissection

Type II spontaneous coronary artery dissection in the left anterior descending artery detected as diffuse stenosis on angiography. On optical coherence tomography, a false lumen (asterisks) and true 
lumen are clearly visualized. FL = false lumen; TL = true lumen.
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circulation because emboli present acutely. After thrombectomy, OCT 
or IVUS is performed to confirm that there is no underlying 
atherosclerosis to precipitate MI.76,79 This is an essential step in 
diagnosis and management.

OCT in the Diagnosis of MI with 
Non-obstructive Coronary Arteries
Patients who present with MI and are found to have unobstructed arteries 
on angiography are said to have MI with non-obstructive coronary arteries 

Figure 4: Coronary Artery Spasm

Figure 5: Coronary Artery Embolism
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Baseline

Lumen area = 2.30 mm2 Lumen area = 3.01 mm2

Lumen area = 6.21 mm2 Lumen area = 6.44 mm2

Post-NTG

A,B: Apparent stenosis in the proximal segment of the right coronary artery, with intimal thickening and ‘bumps’ on optical coherence tomography suggestive of spasm. C,D: After intracoronary 
administration of NTG, the stenosis is resolved and on optical coherence tomography the lumen area is bigger, and the intimal thickening is resolved. NTG = nitroglycerin.

A–D: A large thrombus in the mid- and distal segments of the right coronary artery is detected on angiography. On optical coherence tomography, a large burden of red thrombus, which appears as an 
attenuating mass in the lumen is visualized. After thrombectomy, there was no underlying plaque rupture (not shown).
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(MINOCA). A multimodal approach consisting of OCT and cardiac MRI is 
needed to diagnose the etiology of MINOCA. In a study of 40 patients with 
MINOCA, 10 (25%) patients had normal coronary arteries, 18 (45%) had 
lumen irregularities, and 12 (30%) had mild stenosis <50%.80 OCT was 
performed in the same 40 patients and revealed that 32 patients (80%) 
had substrates that predisposed them to ACS.80 

In a larger study, of 170 women diagnosed with MINOCA, 145 had 
adequate OCT image quality for analysis and, of these, 116 underwent 
cardiac MRI.74 A definite or possible culprit lesion was identified by OCT in 
46.2% (67/145) of participants, most commonly plaque rupture, intraplaque 
cavity, or layered plaque. Cardiac MRI was abnormal in 74.1% (86/116) of 
participants. An ischemic pattern (infarction or myocardial edema in a 
coronary territory) was present in 53.4% (62/116) of participants undergoing 
cardiac MRI. A non-ischemic pattern (myocarditis, takotsubo syndrome, or 
non-ischemic cardiomyopathy) was present in 20.7% (24/116) of 
participants. A cause of MINOCA was identified in 84.5% (98/116) of 
women with multimodality imaging, higher than that with OCT (p<0.001) or 
CMR (p=0.001) alone.74 An ischemic cause was identified in 63.8% of 
women with MINOCA (74/116), a non-ischemic cause was identified in 
20.7% (24/116) of women, and no mechanism was identified in 15.5% 
(18/116) of women. Thus, multimodality imaging with OCT and cardiac MRI 
identified potential mechanisms in 84.5% of women with a diagnosis of 
MINOCA.

Limitations
The studies discussed in this review have several limitations. They are 
largely retrospective, limited to the centers with a high level of expertise 

rather than routine clinical use, and may be different from contemporary 
technologies. In addition, OCT is not optimal in poor TIMI flow and patients 
with advanced renal dysfunction due to the requirement for contrast use, 
and, in SCAD, may propagate coronary dissection. 

In the 2021 American College of Cardiology/American Heart Association/
Society for Cardiovascular Angiography guideline for coronary artery 
revascularization, the use of intravascular imaging is recommended (Class 
2a) or IVUS in procedural guidance, particularly left main and complex 
coronary stenting, with OCT as an alternative option to IVUS, except in 
ostial left main disease.81 In patients with stent failure, IVUS or OCT is 
recommended (Class 2a) to determine the mechanism of stent failure.81 
There has been no specific mention of the use of intracoronary imaging in 
that guideline regarding ACS.

Conclusion
Intracoronary imaging provides additional data with regard to the 
underlying causes of ACS (Supplementary Material Figure 1). Approximately 
half the culprit lesions in ACS are secondary to plaques with RFCs, 
whereas erosions account for approximately one-third and eruptive 
calcified nodules for 5%. Less common, non-atherothrombotic causes of 
ACS that may be overlooked with angiography alone include SCAD, 
spasm, and coronary emboli. OCT is key in a multimodal approach to the 
diagnosis and management of MINOCA. Existing data suggest that 
intracoronary imaging may be useful in optimizing PCI in ACS, but 
randomized trials are warranted to substantiate a role for intravascular 
imaging guidance in improving the long-term outcomes after PCI in  
ACS. 
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