7 research outputs found

    Cigarette Flavouring Regulation by Using Aroma-producing Microorganism Isolated from Maotai Daqu

    Get PDF
    The selected Moutai aromatic microorganisms and their metabolites were applied into the fermentation of tobacco leaves in order to improve the tobacco quality. The results showed that a variety of aromatic substances in Moutai, as well as the typical flavor substances commonly used in cigarettes, were detected in the fermented tobacco leaf extract. In view of the GC-MS results as well as the sensory smoking evaluation of tobacco leaf extracts under designed experimental conditions, the optimal parameters of stable single-strain fermentation process was at 40 ℃ for 10-15 days. The results of specific effects of different fermentation conditions on the content of aroma substances in different parts of tobacco leaves after fermentation, as well as the subsequent sensory evaluation, provided basic data for the improvement of tobacco fermentation and aroma flavoring technology, which was conducive to the development of new cigarettes

    Antifungal Activities and Mode of Action of Cymbopogon citratus, Thymus vulgraris, and Origanum heracleoticum Essential Oil Vapors against Botrytis cinerea and Their Potential Application to Control Postharvest Strawberry Gray Mold

    No full text
    Gray mold caused by Botrytis cinerea is one of the most destructive postharvest decay of strawberry fruit. The present study aims to identify essential oils with antifungal activity against B. cinerea and the underlying mechanisms and their potential application in controlling postharvest decay. In the screening test, essential oils from Cymbopogon citratus (Cc), Thymus vulgraris (Tv), and Origanum heracleoticum (Oh) exhibited maximum inhibition of B. cinerea mycelial growth. The three essential oils altered the hyphal morphology and ultrastructure and resulted in many blebs around the hyphae. The essential oils damaged the plasma membrane of B. cinerea cells and resulted in the leakage of intercellular nucleic acids, proteins and soluble sugars. The exposure of strawberries to the vapors of these three essential oils in commercial package reduced gray mold, with Tv and Oh exhibiting strong efficiency and disease index reduction by 53.85% and 57.69%, respectively. Oh also inhibited postharvest decay and maintained fruit quality, preventing weight loss and soluble solid degradation. The study proposes using plant essential oils as an alternative to chemical fungicides in controlling the gray mold of strawberries

    Cigarette Flavouring Regulation by Using Aroma-producing Microorganism Isolated from Maotai Daqu

    No full text
    The selected Moutai aromatic microorganisms and their metabolites were applied into the fermentation of tobacco leaves in order to improve the tobacco quality. The results showed that a variety of aromatic substances in Moutai, as well as the typical flavor substances commonly used in cigarettes, were detected in the fermented tobacco leaf extract. In view of the GC-MS results as well as the sensory smoking evaluation of tobacco leaf extracts under designed experimental conditions, the optimal parameters of stable single-strain fermentation process was at 40 ℃ for 10-15 days. The results of specific effects of different fermentation conditions on the content of aroma substances in different parts of tobacco leaves after fermentation, as well as the subsequent sensory evaluation, provided basic data for the improvement of tobacco fermentation and aroma flavoring technology, which was conducive to the development of new cigarettes

    Different types of dietary fibers trigger specific alterations in composition and predicted functions of colonic bacterial communities in BALB/c mice

    No full text
    Soluble dietary fibers (SDF) are fermented more than insoluble dietary fibers (IDF), but their effect on colonic bacterial community structure and function remains unclear. Thus, bacterial community composition and function in the colon of BALB/c mice (n = 7) fed with a high level (approximately 20%) of typical SDF, oat-derived β-glucan (G), microcrystalline cellulose (M) as IDF, or their mixture (GM), were compared. Mice in group G showed a lowest average feed intake (p 0.05) compared to other groups, which may be associated with the highest concentration of colonic propionate (p < 0.05) in these mice. The bacterial a-diversity of group G was significantly lower than other groups (p < 0.01). In group G, the relative abundance of bacteria belonging to the phylum Bacteroidetes was significantly increased, whereas bacteria from the phylum Firmicutes were significantly decreased (p < 0.01). The core bacteria for different treatments showed distinct differences. Bacteroides, Dehalobacterium, and Prevotella, including known acetogens and carbohydrate fermenting organisms, were significantly increased in relative abundance in group G. In contrast, Adlercreutzia, Odoribacter, and Coprococcus were significantly more abundant in group M, whereas Oscillospira, Desulfovibrio, and Ruminoccaceae, typical hydrogenotrophs equipped with multiple carbohydrate active enzymes, were remarkably enriched in group GM (p < 0.05). The relative abundance of bacteria from the three classes of Proteobacteria, Betaproteobacteria, Gammaproteobacteria (including Enterobacteriaceae) and Deltaproteobacteria, were significantly more abundant in group G, indicating a higher ratio of conditional pathogenic bacteria in mice fed dietary β-glucan in current study. The predicted colonic microbial function showed an enrichment of "Energy metabolism" and "Carbohydrate metabolism" pathways in mice from group G and M, suggesting that the altered bacterial community in the colon of mice with the two dietary fibers probably resulted in a more efficient degradation of dietary polysaccharides. Our result suggests that the influence of dietary β-glucan (SDF) on colonic bacterial community of mice was more extensively than MCC (IDF). Co-supplementation of the two fibers may help to increase the bacterial diversity and reduce the conditional pathogens in the colon of mice.</p
    corecore