33 research outputs found

    HER2-Specific Chimeric Antigen Receptor–Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial

    Get PDF
    Glioblastoma is an incurable tumor, and the therapeutic options for patients are limited. To determine whether the systemic administration of HER2-specific chimeric antigen receptor (CAR)-modified virus-specific T cells (VSTs) is safe and whether these cells have antiglioblastoma activity. In this open-label phase 1 dose-escalation study conducted at Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, patients with progressive HER2-positive glioblastoma were enrolled between July 25, 2011, and April 21, 2014. The duration of follow-up was 10 weeks to 29 months (median, 8 months). Monotherapy with autologous VSTs specific for cytomegalovirus, Epstein-Barr virus, or adenovirus and genetically modified to express HER2-CARs with a CD28.ζ-signaling endodomain (HER2-CAR VSTs). Primary end points were feasibility and safety. The key secondary end points were T-cell persistence and their antiglioblastoma activity. A total of 17 patients (8 females and 9 males; 10 patients ≥18 years [median age, 60 years; range, 30-69 years] and 7 patients <18 years [median age, 14 years; range, 10-17 years]) with progressive HER2-positive glioblastoma received 1 or more infusions of autologous HER2-CAR VSTs (1 × 106/m2 to 1 × 108/m2) without prior lymphodepletion. Infusions were well tolerated, with no dose-limiting toxic effects. HER2-CAR VSTs were detected in the peripheral blood for up to 12 months after the infusion by quantitative real-time polymerase chain reaction. Of 16 evaluable patients (9 adults and 7 children), 1 had a partial response for more than 9 months, 7 had stable disease for 8 weeks to 29 months, and 8 progressed after T-cell infusion. Three patients with stable disease are alive without any evidence of progression during 24 to 29 months of follow-up. For the entire study cohort, median overall survival was 11.1 months (95% CI, 4.1-27.2 months) from the first T-cell infusion and 24.5 months (95% CI, 17.2-34.6 months) from diagnosis. Infusion of autologous HER2-CAR VSTs is safe and can be associated with clinical benefit for patients with progressive glioblastoma. Further evaluation of HER2-CAR VSTs in a phase 2b study is warranted as a single agent or in combination with other immunomodulatory approaches for glioblastoma

    Attribution of the heavy rainfall events leading to severe flooding in Western Europe during July 2021

    Get PDF
    In July 2021 extreme rainfall across Western Europe caused severe flooding and substantial impacts, including over 200 fatalities and extensive infrastructure damage within Germany and the Benelux countries. After the event, a hydrological assessment and a probabilistic event attribution analysis of rainfall data were initiated and complemented by discussing the vulnerability and exposure context. The global mean surface temperature (GMST) served as a covariate in a generalised extreme value distribution fitted to observational and model data, exploiting the dependence on GMST to estimate how anthropogenic climate change affects the likelihood and severity of extreme events. Rainfall accumulations in Ahr/Erft and the Belgian Meuse catchment vastly exceeded previous observed records. In regions of that limited size the robust estimation of return values and the detection and attribution of rainfall trends are challenging. However, for the larger Western European region it was found that, under current climate conditions, on average one rainfall event of this magnitude can be expected every 400 years at any given location. Consequently, within the entire region, events of similar magnitude are expected to occur more frequently than once in 400 years. Anthropogenic climate change has already increased the intensity of the maximum 1-day rainfall event in the summer season by 3–19 %. The likelihood of such an event to occur today compared to a 1.2 ∘ C cooler climate has increased by a factor of 1.2–9. Models indicate that intensity and frequency of such events will further increase with future global warming. While attribution of small-scale events remains challenging, this study shows that there is a robust increase in the likelihood and severity of rainfall events such as the ones causing extreme impacts in July 2021 when considering a larger region

    Attribution of the heavy rainfall events leading to severe flooding in Western Europe during July 2021

    Get PDF
    In July 2021 extreme rainfall across Western Europe caused severe flooding and substantial impacts, including over 200 fatalities and extensive infrastructure damage within Germany and the Benelux countries. After the event, a hydrological assessment and a probabilistic event attribution analysis of rainfall data were initiated and complemented by discussing the vulnerability and exposure context. The global mean surface temperature (GMST) served as a covariate in a generalised extreme value distribution fitted to observational and model data, exploiting the dependence on GMST to estimate how anthropogenic climate change affects the likelihood and severity of extreme events. Rainfall accumulations in Ahr/Erft and the Belgian Meuse catchment vastly exceeded previous observed records. In regions of that limited size the robust estimation of return values and the detection and attribution of rainfall trends are challenging. However, for the larger Western European region it was found that, under current climate conditions, on average one rainfall event of this magnitude can be expected every 400 years at any given location. Consequently, within the entire region, events of similar magnitude are expected to occur more frequently than once in 400 years. Anthropogenic climate change has already increased the intensity of the maximum 1-day rainfall event in the summer season by 3–19 %. The likelihood of such an event to occur today compared to a 1.2 ∘^{\circ }C cooler climate has increased by a factor of 1.2–9. Models indicate that intensity and frequency of such events will further increase with future global warming. While attribution of small-scale events remains challenging, this study shows that there is a robust increase in the likelihood and severity of rainfall events such as the ones causing extreme impacts in July 2021 when considering a larger region

    Influence of Treatment With Tumor-Treating Fields on Health-Related Quality of Life of Patients With Newly Diagnosed Glioblastoma: A Secondary Analysis of a Randomized Clinical Trial

    Full text link
    Importance Tumor-treating fields (TTFields) therapy improves both progression-free and overall survival in patients with glioblastoma. There is a need to assess the influence of TTFields on patients' health-related quality of life (HRQoL). Objective To examine the association of TTFields therapy with progression-free survival and HRQoL among patients with glioblastoma. Design, Setting, and Participants This secondary analysis of EF-14, a phase 3 randomized clinical trial, compares TTFields and temozolomide or temozolomide alone in 695 patients with glioblastoma after completion of radiochemotherapy. Patients with glioblastoma were randomized 2:1 to combined treatment with TTFields and temozolomide or temozolomide alone. The study was conducted from July 2009 until November 2014, and patients were followed up through December 2016. Interventions Temozolomide, 150 to 200 mg/m2/d, was given for 5 days during each 28-day cycle. TTFields were delivered continuously via 4 transducer arrays placed on the shaved scalp of patients and were connected to a portable medical device. Main Outcomes and Measures Primary study end point was progression-free survival; HRQoL was a predefined secondary end point, measured with questionnaires at baseline and every 3 months thereafter. Mean changes from baseline scores were evaluated, as well as scores over time. Deterioration-free survival and time to deterioration were assessed for each of 9 preselected scales and items. Results Of the 695 patients in the study, 639 (91.9%) completed the baseline HRQoL questionnaire. Of these patients, 437 (68.4%) were men; mean (SD) age, 54.8 (11.5) years. Health-related quality of life did not differ significantly between treatment arms except for itchy skin. Deterioration-free survival was significantly longer with TTFields for global health (4.8 vs 3.3 months; P < .01); physical (5.1 vs 3.7 months; P < .01) and emotional functioning (5.3 vs 3.9 months; P < .01); pain (5.6 vs 3.6 months; P < .01); and leg weakness (5.6 vs 3.9 months; P < .01), likely related to improved progression-free survival. Time to deterioration, reflecting the influence of treatment, did not differ significantly except for itchy skin (TTFields worse; 8.2 vs 14.4 months; P < .001) and pain (TTFields improved; 13.4 vs 12.1 months; P < .01). Role, social, and physical functioning were not affected by TTFields. Conclusions and Relevance The addition of TTFields to standard treatment with temozolomide for patients with glioblastoma results in improved survival without a negative influence on HRQoL except for more itchy skin, an expected consequence from the transducer arrays. Trial Registration clinicaltrials.gov Identifier: NCT00916409

    Effects of DHA- Rich n-3 Fatty Acid Supplementation on Gene Expression in Blood Mononuclear Leukocytes: The OmegAD Study

    Get PDF
    Background: Dietary fish oil, rich in n-3 fatty acids (n-3 FAs), e. g. docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), regulate inflammatory reactions by various mechanisms, e. g. gene activation. However, the effects of long-term treatment with DHA and EPA in humans, using genome wide techniques, are poorly described. Hence, our aim was to determine the effects of 6 mo of dietary supplementation with an n-3 FA preparation rich in DHA on global gene expression in peripheral blood mononuclear cells. Methods and Findings: In the present study, blood samples were obtained from a subgroup of 16 patients originating from the randomized double-blind, placebo-controlled OmegAD study, where 174 Alzheimer disease (AD) patients received daily either 1.7 g of DHA and 0.6 g EPA or placebo for 6 months. In blood samples obtained from 11 patients receiving n-3 FA and five placebo, expressions of approximately 8000 genes were assessed by gene array. Significant changes were confirmed by real-time PCR. At 6 months, the n-3 FAs group displayed significant rises of DHA and EPA plasma concentrations, as well as up-and down-regulation of nine and ten genes, respectively, was noticed. Many of these genes are involved in inflammation regulation and neurodegeneration, e. g. CD63, MAN2A1, CASP4, LOC399491, NAIP, and SORL1 and in ubiqutination processes, e. g. ANAPC5 and UBE2V1. Down-regulations of ANAPC5 and RHOB correlated to increases of plasma DHA and EPA levels. Conclusions: We suggest that 6 months of dietary n-3 FA supplementatio

    Dissemination of Prostate Adenocarcinoma to the Skull Base Mimicking Giant Trigeminal Schwannoma: Anatomic Relevance of the Extradural Neural Axis Component

    No full text
    We report an unusual case of a large metastatic lesion from prostate adenocarcinoma with its epicenter located in Meckel's cave. The patient presented with acute neurological deterioration due to pontomesencephalic, cranial nerve, and temporal lobe compression. This lesion radiologically mimicked a giant trigeminal schwannoma. Complete surgical resection was achieved with improvement in the performance status of the patient. The anatomic relevance the extradural neural axis component in the process of dissemination of prostate adenocarcinoma to the skull base is highlighted

    Dataset for Increased dietary alpha-linolenic acid has sex-specific effects upon eicosapentaenoic acid status in humans: re-examination of data from a randomised, placebo-controlled, parallel study

    No full text
    Dataset supports: Childs, Caroline et al (2014) Increased dietary alpha-linolenic acid has sex-specific effects upon eicosapentaenoic acid status in humans: re-examination of data from a randomised, placebo-controlled, parallel study Nutrition Journal, 13, (113), pp. 1-5.</span
    corecore