44 research outputs found

    d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia

    Get PDF
    The N-methyl-d-aspartate receptor co-agonist d-serine is synthesized by serine racemase and degraded by d-amino acid oxidase. Both d-serine and its metabolizing enzymes are implicated in N-methyl-d-aspartate receptor hypofunction thought to occur in schizophrenia. We studied d-amino acid oxidase and serine racemase immunohistochemically in several brain regions and compared their immunoreactivity and their mRNA levels in the cerebellum and dorsolateral prefrontal cortex in schizophrenia. d-Amino acid oxidase immunoreactivity was abundant in glia, especially Bergmann glia, of the cerebellum, whereas in prefrontal cortex, hippocampus and substantia nigra, it was predominantly neuronal. Serine racemase was principally glial in all regions examined and demonstrated prominent white matter staining. In schizophrenia, d-amino acid oxidase mRNA was increased in the cerebellum, and as a trend for protein. Serine racemase was increased in schizophrenia in the dorsolateral prefrontal cortex but not in cerebellum, while serine racemase mRNA was unchanged in both regions. Administration of haloperidol to rats did not significantly affect serine racemase or d-amino acid oxidase levels. These findings establish the major cell types wherein serine racemase and d-amino acid oxidase are expressed in human brain and provide some support for aberrant d-serine metabolism in schizophrenia. However, they raise further questions as to the roles of d-amino acid oxidase and serine racemase in both physiological and pathophysiological processes in the brain

    Evaluation of expression and function of the H+/myo-inositol transporter HMIT;

    Get PDF
    BACKGROUND: The phosphoinositide (PIns) signalling pathway regulates a series of neuronal processes, such as neurotransmitter release, that are thought to be altered in mood disorders. Furthermore, mood-stabilising drugs have been shown to inhibit key enzymes that regulate PIns production and alter neuronal growth cone morphology in an inositol-reversible manner. Here, we describe analyses of expression and function of the recently identified H+/myo-inositol transporter (HMIT) investigated as a potential regulator of PIns signalling. RESULTS: We show that HMIT is primarily a neuronal transporter widely expressed in the rat and human brain, with particularly high levels in the hippocampus and cortex, as shown by immunohistochemistry. The transporter is localised at the Golgi apparatus in primary cultured neurones. No HMIT-mediated electrophysiological responses were detected in rat brain neurones or slices; in addition, inositol transport and homeostasis were unaffected in HMIT targeted null-mutant mice. CONCLUSION: Together, these data do not support a role for HMIT as a neuronal plasma membrane inositol transporter, as previously proposed. However, we observed that HMIT can transport inositol triphosphate, indicating unanticipated intracellular functions for this transporter that may be relevant to mood control

    Storylines: an alternative approach to representing uncertainty in physical aspects of climate change

    Get PDF
    As climate change research becomes increasingly applied, the need for actionable information is growing rapidly. A key aspect of this requirement is the representation of uncertainties. The conventional approach to representing uncertainty in physical aspects of climate change is probabilistic, based on ensembles of climate model simulations. In the face of deep uncertainties, the known limitations of this approach are becoming increasingly apparent. An alternative is thus emerging which may be called a ‘storyline’ approach. We define a storyline as a physically self-consistent unfolding of past events, or of plausible future events or pathways. No a priori probability of the storyline is assessed; emphasis is placed instead on understanding the driving factors involved, and the plausibility of those factors. We introduce a typology of four reasons for using storylines to represent uncertainty in physical aspects of climate change: (i) improving risk awareness by framing risk in an event-oriented rather than a probabilistic manner, which corresponds more directly to how people perceive and respond to risk; (ii) strengthening decision-making by allowing one to work backward from a particular vulnerability or decision point, combining climate change information with other relevant factors to address compound risk and develop appropriate stress tests; (iii) providing a physical basis for partitioning uncertainty, thereby allowing the use of more credible regional models in a conditioned manner and (iv) exploring the boundaries of plausibility, thereby guarding against false precision and surprise. Storylines also offer a powerful way of linking physical with human aspects of climate change

    Dysregulation of specialized delay/interference-dependent working memory following loss of dysbindin-1A in schizophrenia-related phenotypes

    Get PDF
    Dysbindin-1, a protein that regulates aspects of early and late brain development, has been implicated in the pathobiology of schizophrenia. As the functional roles of the three major isoforms of dysbindin-1, (A, B, and C) remain unknown, we generated a novel mutant mouse, dys-1A -/-, with selective loss of dysbindin-1A and investigated schizophrenia-related phenotypes in both males and females. Loss of dysbindin-1A resulted in heightened initial exploration and disruption in subsequent habituation to a novel environment, together with heightened anxiety-related behavior in a stressful environment. Loss of dysbindin-1A was not associated with disruption of either long-term (olfactory) memory or spontaneous alternation behavior. However, dys-1A -/-showed enhancement in delay-dependent working memory under high levels of interference relative to controls, ie, impairment in sensitivity to the disruptive effect of such interference. These findings in dys-1A -/-provide the first evidence for differential functional roles for dysbindin-1A vs dysbindin-1C isoforms among phenotypes relevant to the pathobiology of schizophrenia. Future studies should investigate putative sex differences in these phenotypic effects

    An allosteric interaction between the NMDA receptor polyamine and ifenprodil sites in rat cultured cortical neurones

    No full text
    The atypical NR2B subunit-selective NMDA receptor antagonist ifenprodil was originally believed to act as a competitive antagonist at the polyamine binding site of the NMDA receptor. However, a number of studies have suggested that ifenprodil might bind to a distinct site.Using whole-cell voltage clamp recordings, we have studied the interaction of spermine with both ifenprodil and the related NR2B selective antagonist Ro 8–4304 at the NMDA receptor in rat cultured cortical neurones in the presence of saturating concentrations of glycine.Ifenprodil and Ro 8-4304 inhibited steady-state currents evoked by 100 μm NMDA in the absence of spermine with IC50 values of 0.3 and 0.6 μm, respectively. In the presence of 1 and 3 mm spermine, IC50 values for ifenprodil were 1.4 and 1.8 μm and for Ro 8-4304 they were 3.0 and 7.5 μm, respectively.In the presence of spermine, the on-time constant of receptor blockade by both antagonists was significantly slower than control and the off-time constant of recovery from receptor blockade following removal of Ro 8-4304 was significantly faster.Fast application of spermine during an NMDA steady-state current in the continuous presence of a subsaturating concentration of either antagonist resulted in a biphasic increase in the current, consistent with a fast increase upon spermine binding and a slow increase resultant from dissociation of antagonist due to spermine binding-induced allosteric reduction in receptor antagonist affinity. In agreement with this, at higher, saturating concentrations of antagonist, the slow increase in current amplitude was markedly reduced or absent.These observations are consistent with a non-competitive, allosteric interaction between spermine and the antagonists, such that spermine binding to the NMDA receptor results in a reduction in receptor affinity for the antagonists and vice versa.The effects of Mg2+ on the NMDA-evoked currents and its interaction with ifenprodil were similar to those of spermine, supporting the suggestion that Mg2+ might be the physiological ligand acting at the spermine site mediating glycine-independent stimulation

    Altered Expression of G q/11

    No full text
    corecore