258 research outputs found

    Playing Second Trombone

    Get PDF

    Scaling Back the ADA: How the Sutton v. United Airlines Decision Affects Employees with Bipolar Disorder.

    Get PDF
    The Sutton v. United Airlines decision went too far in the Supreme Court’s effort to scale back the protections of the Americans with Disabilities Act (ADA).  Congress should review the Sutton decision and amend the ADA to consider disabilities as they exist without regard to mitigating measures based on the severity of the illness. To seek protection under the ADA, one must have a discernable disability, and one’s impairment must be diagnosed and disclosed to the employer. Disability, however, was not specifically defined in the ADA, and no agency or regulation has specifically defined disability for the courts to utilize under the ADA. The lack of a definition has seriously undermined the purpose and effectiveness of the ADA.   The Court’s opinion has dealt a substantial blow to employees seeking protection under the ADA. According to the Court, “substantially limits” means to be presently substantially limited. The ADA only extends to those who can prove they have an impairment that “substantially limits” one or more major life activity. If a plaintiff is currently healthy, an inquiry as to one’s condition when viewed in its present form will always be viewed in a healthy/non-disabled form if there is no manifestation of their condition. Interpreting the ADA in its present indicative form creates the danger of allowing an employer to reassess the condition of its employees and allows an opening for these employers to freely discriminate. Ultimately, a more practical approach is needed when determining whether an employee should be protected

    Classifying Regional Variation in Thermal Regime Based on Stream Fish Community Patterns

    Full text link
    Although the importance of water temperature to the ecology of stream fishes is well documented, relatively little information is available on the extent of regional variation in thermal regime and its influence on stream fish distribution and abundance patterns. In streams draining the heterogeneous glacial landscape of Michigan’s Lower Peninsula, regional variation in summer mean temperature and temperature fluctuation is among the highest reported in the literature. We developed a habitat classification to simplify the description of thermal regimes and to describe the relationships between available thermal regimes and distribution patterns of stream fishes. Changes in community composition, species richness, and standing stocks of key fish species occurred across gradients in mean temperature and temperature fluctuation. These changes were used to identify three mean temperature categories (cold, <19°C; cool, 19–<22°C; and warm, ≥22°C) and three temperature fluctuation categories (stable, <5°C; moderate, 5–<10°C; and extreme, ≥10°C). The combination of these categories resulted in a 3 × 3 matrix with nine discrete thermal regimes. The classification developed in this study provides a framework for descriptions of the realized thermal niche of stream fishes, and can be used as a baseline for measurement of changes in distribution patterns associated with future climate warming. Our results suggest that observed differences in community structure among sites are largely attributable to spatial variation in mean temperature and temperature fluctuation. Thus, accounting for the linkage between regional variation in thermal regime and fish community structure should improve our ability to effectively assess and manage stream resources.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141912/1/tafs0018.pd

    Electronic Health Record (EHR) Data Quality and Type 2 Diabetes Mellitus Care

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Due to frequent utilization, high costs, high prevalence, and negative health outcomes, the care of patients managing type 2 diabetes mellitus (T2DM) remains an important focus for providers, payers, and policymakers. The challenges of care delivery, including care fragmentation, reliance on patient self-management behaviors, adherence to care management plans, and frequent medical visits are well-documented in the literature. T2DM management produces numerous clinical data points in the electronic health record (EHR) including laboratory test values and self-reported behaviors. Recency or absence of these data may limit providers’ ability to make effective treatment decisions for care management. Increasingly, the context in which these data are being generated is changing. Specifically, telehealth usage is increasing. Adoption and use of telehealth for outpatient care is part of a broader trend to provide care at-a-distance, which was further accelerated by the COVID-19 pandemic. Despite unknown implications for patients managing T2DM, providers are increasingly using telehealth tools to complement traditional disease management programs and have adapted documentation practices for virtual care settings. Evidence suggests the quality of data documented during telehealth visits differs from that which is documented during traditional in-person visits. EHR data of differential quality could have cascading negative effects on patient healthcare outcomes. The purpose of this dissertation is to examine whether and to what extent levels of EHR data quality are associated with healthcare outcomes and if EHR data quality is improved by using health information technologies. This dissertation includes three studies: 1) a cross-sectional analysis that quantifies the extent to which EHR data are timely, complete, and uniform among patients managing T2DM with and without a history of telehealth use; 2) a panel analysis to examine associations between primary care laboratory test ages (timeliness) and subsequent inpatient hospitalizations and emergency department admissions; and 3) a panel analysis to examine associations between patient portal use and EHR data timeliness

    Influence of anglers’ specializations on catch, harvest, and bycatch of targeted taxa

    Get PDF
    Fishery managers often use catch per unit effort (CPUE) of a given taxon derived from a group of anglers,those that sought said taxon, to evaluate fishery objectives because managers assume CPUE for this group of anglers is most sensitive to changes in fish taxon density. Further, likelihood of harvest may differ for sought and non-sought taxa if taxon sought is a defining characteristic of anglers’ attitude toward harvest.We predicted that taxon-specific catch across parties and reservoirs would be influenced by targeted taxon after controlling for number of anglers in a party and time spent fishing (combine to quantify fishing effort of party); we also predicted similar trends for taxon-specific harvest. We used creel-survey data collected from anglers that varied in taxon targeted, from generalists (targeting “anything” [no primary target taxa, but rather targeting all fishes]) to target specialists (e.g., anglers targeting largemouth bass Micropterus salmoides) in 19 Nebraska reservoirs during 2009–2011 to test our predictions. Taxon-specific catch and harvest were, in general, positively related to fishing effort. More importantly, we observed differences of catch and harvest among anglers grouped by taxon targeted for each of the eight taxa assessed. Anglers targeting a specific taxon had the greatest catch for that taxon and anglers targeting anything typically had the second highest catch for that taxon. In addition, anglers tended to catch more of closely related taxa and of taxa commonly targeted with similar fishing techniques. We encourage managers to consider taxon-specific objectives of target and non-target catch and harvest

    Influence of anglers’ specializations on catch, harvest, and bycatch of targeted taxa

    Get PDF
    Fishery managers often use catch per unit effort (CPUE) of a given taxon derived from a group of anglers,those that sought said taxon, to evaluate fishery objectives because managers assume CPUE for this group of anglers is most sensitive to changes in fish taxon density. Further, likelihood of harvest may differ for sought and non-sought taxa if taxon sought is a defining characteristic of anglers’ attitude toward harvest.We predicted that taxon-specific catch across parties and reservoirs would be influenced by targeted taxon after controlling for number of anglers in a party and time spent fishing (combine to quantify fishing effort of party); we also predicted similar trends for taxon-specific harvest. We used creel-survey data collected from anglers that varied in taxon targeted, from generalists (targeting “anything” [no primary target taxa, but rather targeting all fishes]) to target specialists (e.g., anglers targeting largemouth bass Micropterus salmoides) in 19 Nebraska reservoirs during 2009–2011 to test our predictions. Taxon-specific catch and harvest were, in general, positively related to fishing effort. More importantly, we observed differences of catch and harvest among anglers grouped by taxon targeted for each of the eight taxa assessed. Anglers targeting a specific taxon had the greatest catch for that taxon and anglers targeting anything typically had the second highest catch for that taxon. In addition, anglers tended to catch more of closely related taxa and of taxa commonly targeted with similar fishing techniques. We encourage managers to consider taxon-specific objectives of target and non-target catch and harvest

    Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA

    Get PDF
    Mosquito-borne flaviviruses, including yellow fever virus (YFV), Zika virus (ZIKV), and West Nile virus (WNV), profoundly affect human health. The successful transmission of these viruses to a human host depends on the pathogen’s ability to overcome a potentially sterilizing immune response in the vector mosquito. Similar to other invertebrate animals and plants, the mosquito’s RNA silencing pathway comprises its primary antiviral defense. Although a diverse range of plant and insect viruses has been found to encode suppressors of RNA silencing, the mechanisms by which flaviviruses antagonize antiviral small RNA pathways in disease vectors are unknown. Here we describe a viral suppressor of RNA silencing (VSR) encoded by the prototype flavivirus, YFV. We show that the YFV capsid (YFC) protein inhibits RNA silencing in the mosquito Aedes aegypti by interfering with Dicer. This VSR activity appears to be broadly conserved in the C proteins of other medically important flaviviruses, including that of ZIKV. These results suggest that a molecular “arms race” between vector and pathogen underlies the continued existence of flaviviruses in nature

    Late-Life Exercise Mitigates Skeletal Muscle Epigenetic Aging

    Get PDF
    There are functional benefits to exercise in muscle, even when performed late in life, but the contributions of epigenetic factors to late-life exercise adaptation are poorly defined. Using reduced representation bisulfite sequencing (RRBS), ribosomal DNA (rDNA) and mitochondrial-specific examination of methylation, targeted high-resolution methylation analysis, and DNAge™ epigenetic aging clock analysis with a translatable model of voluntary murine endurance/resistance exercise training (progressive weighted wheel running, PoWeR), we provide evidence that exercise may mitigate epigenetic aging in skeletal muscle. Late-life PoWeR from 22–24 months of age modestly but significantly attenuates an age-associated shift toward promoter hypermethylation. The epigenetic age of muscle from old mice that PoWeR-trained for eight weeks was approximately eight weeks younger than 24-month-old sedentary counterparts, which represents ~8% of the expected murine lifespan. These data provide a molecular basis for exercise as a therapy to attenuate skeletal muscle aging

    The role of sand lances (Ammodytes sp.) in the Northwest Atlantic ecosystem: a synthesis of current knowledge with implications for conservation and management

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Staudinger, M. D., Goyert, H., Suca, J. J., Coleman, K., Welch, L., Llopiz, J. K., Wiley, D., Altman, I., Applegate, A., Auster, P., Baumann, H., Beaty, J., Boelke, D., Kaufman, L., Loring, P., Moxley, J., Paton, S., Powers, K., Richardson, D., Robbins, J., Runge, J., Smith, B., Spiegel, C., & Steinmetz, H. The role of sand lances (Ammodytes sp.) in the Northwest Atlantic ecosystem: a synthesis of current knowledge with implications for conservation and management. Fish and Fisheries, 00, (2020): 1-34, doi:10.1111/faf.12445.The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role of Ammodytes to inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role of Ammodytes in the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consume Ammodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution of Ammodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment of Ammodytes in the NWA and are intended to inform new research and support regional ecosystem‐based management approaches.This manuscript is the result of follow‐up work stemming from a working group formed at a two‐day multidisciplinary and international workshop held at the Parker River National Wildlife Refuge, Massachusetts in May 2017, which convened 55 experts scientists, natural resource managers and conservation practitioners from 15 state, federal, academic and non‐governmental organizations with interest and expertise in Ammodytes ecology. Support for this effort was provided by USFWS, NOAA Stellwagen Bank National Marine Sanctuary, U.S. Department of the Interior, U.S. Geological Survey, Northeast Climate Adaptation Science Center (Award # G16AC00237), an NSF Graduate Research Fellowship to J.J.S., a CINAR Fellow Award to J.K.L. under Cooperative Agreement NA14OAR4320158, NSF award OCE‐1325451 to J.K.L., NSF award OCE‐1459087 to J.A.R, a Regional Sea Grant award to H.B. (RNE16‐CTHCE‐l), a National Marine Sanctuary Foundation award to P.J.A. (18‐08‐B‐196) and grants from the Mudge Foundation. The contents of this paper are the responsibility of the authors and do not necessarily represent the views of the National Oceanographic and Atmospheric Administration, U.S. Fish and Wildlife Service, New England Fishery Management Council and Mid‐Atlantic Fishery Management Council. This manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for Governmental purposes. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government
    corecore