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Abstract
There are functional benefits to exercise in muscle, even when performed late in 
life, but the contributions of epigenetic factors to late-life exercise adaptation are 
poorly defined. Using reduced representation bisulfite sequencing (RRBS), ribosomal 
DNA (rDNA) and mitochondrial-specific examination of methylation, targeted high-
resolution methylation analysis, and DNAge™ epigenetic aging clock analysis with a 
translatable model of voluntary murine endurance/resistance exercise training (pro-
gressive weighted wheel running, PoWeR), we provide evidence that exercise may 
mitigate epigenetic aging in skeletal muscle. Late-life PoWeR from 22–24 months of 
age modestly but significantly attenuates an age-associated shift toward promoter 
hypermethylation. The epigenetic age of muscle from old mice that PoWeR-trained 
for eight weeks was approximately eight weeks younger than 24-month-old seden-
tary counterparts, which represents ~8% of the expected murine lifespan. These data 
provide a molecular basis for exercise as a therapy to attenuate skeletal muscle aging.
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1  |  INTRODUC TION

All tissues, including skeletal muscle, undergo DNA methylation al-
terations across the lifespan (Turner et al., 2020; Sailani et al., 2019) 
that may contribute to structural and functional decline with aging. 
Exercise training alters muscle DNA methylation (Wen et al., 2021), 
but whether it causes the aged mouse skeletal muscle methylome 
to more closely resemble that of a younger mouse remains unclear. 
Using the high-volume resistance/endurance exercise of progres-
sive weighted wheel running (PoWeR) developed by our laboratory 
(Murach et al., 2020), mice were trained from 22–24 months of age. 
After training, we assessed how exercise affected epigenetic aging 
in skeletal muscle with RRBS, high-resolution targeted analyses, and 
a high-coverage analysis of >500 tissue-specific murine CpG loci 
(DNAge™ analysis) (Chew et al., 2018; Kemp et al., 2020; Hayano 
et al., 2019) that overlaps with the Horvath pan-tissue epigenetic 
aging clock (Horvath, 2013). We hypothesized that late-life com-
bined resistance/endurance exercise would reduce aging-associated 
hypermethylation (Turner et al., 2020) and DNAge™ in skeletal 
muscle.

2  |  RESULTS AND DISCUSSION

RRBS was performed on skeletal muscle and analyzed as described 
previously (Park et al., 2014; Wen et al., 2021). In the gastrocnemius 
muscle of sedentary 24-month-old mice, 103 unique CpG sites in 
promoter regions (i.e., within 1 kb upstream of the transcription start 
site) that mapped to at least one of 9 gene identifiers were hypo-
methylated compared to 4-month-old mice (FDR<0.05, Table S1a), 
whereas 762 distinct CpG sites that mapped to one or more of 133 
different genes were hypermethylated (FDR<0.05, Figure 1a, Table 
S1b). Pathway analysis of genes with hypermethylated promoters in 
aged muscle revealed over-representation in tricarboxylic acid cycle 
(TCA) regulation (p = 0.00572, q = 0.125), particularly genes associ-
ated with NAD activity (Figure 1b). This may explain the widespread 
reduction of TCA cycle proteins recently reported in aged human 
muscle using exploratory proteomics (Ubaida-Mohien et al., 2019). 
In exons, 68 CpG sites that mapped to at least one of 27  genes 
were hypomethylated (Table S2a), while 864 distinct CpG sites that 
mapped to one or more of 146 genes were hypermethylated in aged 
sedentary muscle relative to young (Table S2b, FDR<0.05). The 
same pattern occurred with intron methylation in aged sedentary 
relative to young muscle; 271 CpG sites that mapped to at least one 
of 131 genes were hypomethylated (Table S3a); and 2,261 CpG sites 
that mapped to one or more of 301 genes were hypermethylated 
(Table S3b, FDR<0.05). No genes were hypomethylated in all three 
regions with age, while 18 genes had hypermethylation in all three 
regions (gene list in Table S3c).

In promoters, relative to young sedentary mice, five genes that 
contained at least one hypomethylated CpG in aged sedentary mus-
cle did not contain any significantly hypomethylated CpGs in mice 
that engaged in PoWeR from 22–24 months of age (genes mapped 

to six CpGs, Figure 1c, Table S4a). Eighteen genes that had at least 
one hypermethylated CpG in their promoter with age alone did not 
have any significantly hypermethylated CpGs in aged PoWeR muscle 
relative to young (29 CpGs mapped to these genes, Figure 1d,e). In 
multiple CpGs, PoWeR attenuated age-associated promoter region 
hypermethylation of Rbm10 (Figure 1e), a pleiotropic factor impli-
cated in: (1) alternative splicing (Loiselle & Sutherland, 2018) which 
is generally dysregulated by aging in skeletal muscle (Ubaida-Mohien 
et al., 2019), (2) regulation of survival of motor neuron (SMN) alter-
native splicing (Sutherland et al., 2017), a protein that can control 
muscle weight and function throughout the lifespan (Zhao et al., 
2021), and (3) striated muscle hypertrophy (Mohan et al., 2018). 
PoWeR was also associated with relatively lower methylation across 
the promoter of Timm8a1 in aged mice (Figure 1e). In skeletal muscle, 
a PGC-1β knockout model that exhibits impaired mitochondrial func-
tion and oxidant defense is associated with reduced Timm8a1 levels 
(Ramamoorthy et al., 2015), while loss of Timm8a1 function results 
in swollen mitochondria and broken cristae (Song et al., 2021). Using 
high-resolution targeted methylation analysis (>1,000x coverage 
per CpG on average), we confirmed that promoter regions of Rbm10 
and Timm8a1 were less hypermethylated with exercise in aged mus-
cle (Figure S1a,b). In addition, promoters of 9  genes had a unique 
hypomethylated CpG (none had multiple) and 10  genes had one 
or more unique hypermethylated CpGs in aged PoWeR relative to 
young muscle (9 and 12 CpGs mapped to these genes, respectively, 
FDR<0.05); these promotors were not affected by aging alone (Table 
S4b). Proportionally, more CpGs hypomethylated with age were af-
fected by PoWeR than those hypermethylated by age, but a larger 
absolute number of CpGs hypermethylated with age were affected 
by PoWeR since aging was more associated with hypermethylation. 
Exon data are reported in Figure S2 and Table S5, and intron data 
are found in Table S6. Introns followed a different pattern compared 
with the rest of the genome with respect to exercise mitigating the 
epigenetic effects of aging. Relative to young mice, a comparatively 
large number of genes (93) had intronic regions with at least one 
CpG hypomethylated by agingbut no CpGs hypomethylated in aged 
PoWeR muscle (genes mapped to 112 CpGs).

Transcription can be controlled by methylation at a single CpG 
or by clusters of CpGs, called “CpG islands”. Analysis of CpG islands 
(FDR<0.05) generally reflected the individual site data. Sixteen 
genes (which mapped to 12 CpG islands) were hypermethylated in 
aged animals but not in aged PoWeR relative to young, while five 
genes (which mapped to four CpG islands) were hypermethylated 
only in aged PoWeR mice. Eight genes (which mapped to six CpG 
islands) were hypomethylated by age but not by PoWeR in aged mice 
relative to young; among these was Hoxa3. Hox genes were recently 
implicated as hotspots for age-associated methylation changes in 
muscle (Turner et al., 2020; Voisin et al., 2021). Three genes (which 
mapped to two CpG islands) were hypomethylated only in aged 
PoWeR mice. The CpG island analyses are presented in Table S7.

rDNA is hypermethylated with age and harbors a highly con-
served methylation clock of aging (Wang & Lemos, 2019). We found 
360 CpG sites in rDNA that were differentially methylated in aged 
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F I G U R E  1 Promoter methylation changes in young, aged sedentary, and aged progressive weighted wheel running (PoWeR) muscles. (a) 
Percent methylation of promoter CpGs (≤ 1 kb from the transcription start site) in gastrocnemius muscle from aged sedentary versus young 
mice (all sites *FDR<0.05 aged sedentary versus young; aged PoWeR methylation for the same CpGs shown for reference). (b) Promoters 
of tricarboxylic acid (TCA) cycle genes hypermethylated with age relative to young mice (all CpG sites *FDR<0.05 aged sedentary versus 
young, aged PoWeR shown for reference; mean +/- SEM); inset shows the average methylation of these CpGs in the promoter. (c) Promoter 
regions of genes hypomethylated in muscle of aged sedentary mice relative to young mice (*FDR<0.05), but not hypomethylated in aged 
PoWeR mice relative to young mice. (d) Promoter regions of genes hypermethylated in muscle of aged sedentary mice relative to young 
mice (*FDR<0.05) but not hypermethylated in aged PoWeR mice relative to young mice. (e) Promoter region methylation of Rbm10 and 
Timm8a1; x-axis represents the chromosomal position of individual CpG loci in the promoter region of the gene (*FDR<0.05 aged sedentary 
relative to young mice). N = 5 per group; line at median in (e). Repeated gene names = multiple CpG sites, see supplementary tables for CpG 
locations. A generalized linear model accounting for all groups was used to determine differential methylation, with a correction for multiple 
comparisons by controlling false discovery rate (FDR) using the Benjamini–Hochberg method (α = 0.05)

(a) (d)

(e)

(b)

(c)
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F I G U R E  2 Ribosomal DNA (rDNA) methylation and DNAge™ analysis. (a) rDNA CpGs (listed by chromosomal position) hypomethylated in 
muscle from aged sedentary versus young animals (*FDR<0.05), but not hypomethylated in muscle from aged PoWeR versus young animals. 
(b) rDNA CpGs (listed by chromosomal position) hypermethylated in muscle from aged sedentary versus young animals (*FDR<0.05), but 
not hypermethylated in muscle from aged PoWeR versus young animals. (c) DNAge™ analysis of muscle from aged sedentary versus aged 
PoWeR muscle, analyzed using a directional t-test. A generalized linear model accounting for all groups was used to determine differential 
methylation in (a) and (b), with a correction for multiple comparisons by controlling false discovery rate (FDR) using the Benjamini–Hochberg 
method (α = 0.05); histograms depict median with a line

(a)

(b)

(c)
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relative to young muscle (FDR<0.05). Of these sites, 15 were hy-
pomethylated and 345 were hypermethylated (Table S8a,b). Nine 
sites hypomethylated in sedentary aged relative to young muscle 
were not hypomethylated after PoWeR (Figure 2a). Eleven sites hy-
permethylated in aged relative to young muscle were shifted toward 
youthful methylation levels by PoWeR (Figure 2b). Using targeted 
high-resolution methylation analysis (>10,000x coverage per rDNA 
CpG on average), methylation at and around an enhancer region site 
(CpG 43519) was demonstrated to be higher with exercise relative 
to aging alone, but these sites were hypermethylated relative to 
young irrespective of exercise (Figure S1c). Our general conclusion 
from RRBS that exercise altered rDNA methylation in aged muscle 
is valid, but the targeted analysis highlighted the potential influence 
of read coverage on absolute methylation levels (RRBS coverage at 
site 43519 was 23x on average). The majority of unique differentially 
methylated rDNA sites in aged PoWeR relative to young sedentary 
muscle were hypermethylated (78 out of 85), pointing to a distinct 
interaction between aging and exercise with respect to rDNA reg-
ulation (Table S9). Muscle rDNA methylation alterations with aging 
and exercise may have implications for ribosome biogenesis, a pro-
cess induced during muscle hypertrophy Figueiredo et al. (2021). In 
our dataset, mitochondrial DNA (mtDNA) methylation coverage was 
generally low, and of the sites with ≥10x coverage in each animal (33 
CpGs), none were altered by age or age and PoWeR (data not shown).

Several mammalian epigenetic aging clocks have been developed 
with the aim of expediting the discovery and validation of thera-
peutics and interventions to attenuate, prevent, or reverse biolog-
ical aging (Simpson & Chandra, 2021). Zymo Research's validated 
DNAge™ algorithm, which expands upon the Horvath pan-tissue 
clock built using elastic net regression (Horvath, 2013) and is accu-
rate in murine muscle, was used to compare the chronological age 
of muscle from aged sedentary and PoWeR animals to that of young 
animals. Despite one sedentary mouse that had an aberrantly young 
predicted age (with no reason to exclude it based on the behavior/
appearance of the mouse or tissue, or anything anomalous accord-
ing to the principle coordinate analysis plot), the epigenetic age of 
PoWeR muscle was 10% lower (~8 weeks younger) compared to sed-
entary (PoWeR = 79.2 wks [SD, 3.8 wks], aged sedentary = 87.7 wks 
[SD, 10.6 wks], young sedentary = 10.4 wks [SD, 9.8 wks]) (Figure 2c, 
Table S10). Aging generally results in greater molecular variability 
or “disorderliness”, and it is notable that PoWeR resulted in lower 
variability in the DNAge™ estimate of older animals (Figure 2c). If 
the aged sedentary mouse with the lowest methylation age were 
removed, the epigenetic age difference between aged exercised and 
aged sedentary muscle increases to ~13 weeks (p = 0.007). Ribosomal 
DNAge clock analysis (i.e., rDNAge) (Wang & Lemos, 2019) showed 
a 9% reduction with PoWeR, but this was not statistically significant 
(p = 0.29, t = 0.5786; data not shown). Shannon entropy (Hannum 
et al., 2013) of nuclear and rDNA methylation was higher with aging 
(FDR<0.05) and not influenced by PoWeR, but mtDNA was similar 
between young sedentary and aged PoWeR (Figure S3).

DNAge™ was sufficiently sensitive to detect a younger epigen-
etic age in mouse gastrocnemius muscle after 8 weeks of PoWeR, 

but recent advancements promise improved robustness and ac-
curacy of muscle-specific methylation-based aging clocks (Voisin 
et al., 2020). Future studies may clarify which exercise-mediated 
effects on DNAge occur independent of aging. In some instances, 
chronological age is less associated with muscle dysfunction than 
other related factors such as body mass or cardiorespiratory fitness 
(Distefano et al., 2017). Nevertheless, the attenuation of muscle epi-
genetic aging by exercise supports recent targeted observations in 
humans (Blocquiaux et al., 2021; Ruple et al., 2021) and adds to the 
growing body of evidence touting exercise as a strategy to extend 
healthspan. Our work provides potentially modifiable epigenetic 
markers for improving muscle health with age once the mechanistic 
bases of dynamic DNA methylation alterations in muscle fibers are 
more clearly defined (Small et al., 2021).
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