76 research outputs found
Meta-Analysis of Drosophila Circadian Microarray Studies Identifies a Novel Set of Rhythmically Expressed Genes
Five independent groups have reported microarray studies that identify dozens of rhythmically expressed genes in the fruit fly Drosophila melanogaster. Limited overlap among the lists of discovered genes makes it difficult to determine which, if any, exhibit truly rhythmic patterns of expression. We reanalyzed data from all five reports and found two sources for the observed discrepancies, the use of different expression pattern detection algorithms and underlying variation among the datasets. To improve upon the methods originally employed, we developed a new analysis that involves compilation of all existing data, application of identical transformation and standardization procedures followed by ANOVA-based statistical prescreening, and three separate classes of post hoc analysis: cross-correlation to various cycling waveforms, autocorrelation, and a previously described fast Fourier transform–based technique [1–3]. Permutation-based statistical tests were used to derive significance measures for all post hoc tests. We find application of our method, most significantly the ANOVA prescreening procedure, significantly reduces the false discovery rate relative to that observed among the results of the original five reports while maintaining desirable statistical power. We identify a set of 81 cycling transcripts previously found in one or more of the original reports as well as a novel set of 133 transcripts not found in any of the original studies. We introduce a novel analysis method that compensates for variability observed among the original five Drosophila circadian array reports. Based on the statistical fidelity of our meta-analysis results, and the results of our initial validation experiments (quantitative RT-PCR), we predict many of our newly found genes to be bona fide cyclers, and suggest that they may lead to new insights into the pathways through which clock mechanisms regulate behavioral rhythms
Recommended from our members
A Platform-Independent Method for Detecting Errors in Metagenomic Sequencing Data: DRISEE
We provide a novel method, DRISEE (duplicate read inferred sequencing error estimation), to assess sequencing quality (alternatively referred to as “noise” or “error”) within and/or between sequencing samples. DRISEE provides positional error estimates that can be used to inform read trimming within a sample. It also provides global (whole sample) error estimates that can be used to identify samples with high or varying levels of sequencing error that may confound downstream analyses, particularly in the case of studies that utilize data from multiple sequencing samples. For shotgun metagenomic data, we believe that DRISEE provides estimates of sequencing error that are more accurate and less constrained by technical limitations than existing methods that rely on reference genomes or the use of scores (e.g. Phred). Here, DRISEE is applied to (non amplicon) data sets from both the 454 and Illumina platforms. The DRISEE error estimate is obtained by analyzing sets of artifactual duplicate reads (ADRs), a known by-product of both sequencing platforms. We present DRISEE as an open-source, platform-independent method to assess sequencing error in shotgun metagenomic data, and utilize it to discover previously uncharacterized error in de novo sequence data from the 454 and Illumina sequencing platforms.</p
Metagenomic analysis of planktonic microbial consortia from a non-tidal urban-impacted segment of James River
Knowledge of the diversity and ecological function of the microbial consortia of James River in Virginia, USA, is essential to developing a more complete understanding of the ecology of this model river system. Metagenomic analysis of James River\u27s planktonic microbial community was performed for the first time using an unamplified genomic library and a 16S rDNA amplicon library prepared and sequenced by Ion PGM and MiSeq, respectively. From the 0.46-Gb WGS library (GenBank:SRR1146621; MG-RAST:4532156.3), 4 × 106 reads revealed \u3e3 × 106 genes, 240 families of prokaryotes, and 155 families of eukaryotes. From the 0.68-Gb 16S library (GenBank:SRR2124995; MG-RAST:4631271.3; EMB:2184), 4 × 106 reads revealed 259 families of eubacteria. Results of the WGS and 16S analyses were highly consistent and indicated that more than half of the bacterial sequences were Proteobacteria, predominantly Comamonadaceae. The most numerous genera in this group were Acidovorax (including iron oxidizers, nitrotolulene degraders, and plant pathogens), which accounted for 10 % of assigned bacterial reads. Polaromonas were another 6 % of all bacterial reads, with many assignments to groups capable of degrading polycyclic aromatic hydrocarbons. Albidiferax (iron reducers) and Variovorax (biodegraders of a variety of natural biogenic compounds as well as anthropogenic contaminants such as polycyclic aromatic hydrocarbons and endocrine disruptors) each accounted for an additional 3 % of bacterial reads. Comparison of these data to other publically-available aquatic metagenomes revealed that this stretch of James River is highly similar to the upper Mississippi River, and that these river systems are more similar to aquaculture and sludge ecosystems than they are to lakes or to a pristine section of the upper Amazon River. Taken together, these analyses exposed previously unknown aspects of microbial biodiversity, documented the ecological responses of microbes to urban effects, and revealed the noteworthy presence of 22 human-pathogenic bacterial genera (e.g., Enterobacteriaceae, pathogenic Pseudomonadaceae, and ‘Vibrionales\u27) and 6 pathogenic eukaryotic genera (e.g., Trypanosomatidae and Vahlkampfiidae). This information about pathogen diversity may be used to promote human epidemiological studies, enhance existing water quality monitoring efforts, and increase awareness of the possible health risks associated with recreational use of James River
Metagenomic analysis of planktonic microbial consortia from a non-tidal urban-impacted segment of James River
Knowledge of the diversity and ecological function of the microbial consortia of James River in Virginia, USA, is essential to developing a more complete understanding of the ecology of this model river system. Metagenomic analysis of James River\u27s planktonic microbial community was performed for the first time using an unamplified genomic library and a 16S rDNA amplicon library prepared and sequenced by Ion PGM and MiSeq, respectively. From the 0.46-Gb WGS library (GenBank:SRR1146621; MG-RAST:4532156.3), 4 × 10 6 reads revealed \u3e3 × 10 6 genes, 240 families of prokaryotes, and 155 families of eukaryotes. From the 0.68-Gb 16S library (GenBank:SRR2124995; MG-RAST:4631271.3; EMB:2184), 4 × 10 6 reads revealed 259 families of eubacteria. Results of the WGS and 16S analyses were highly consistent and indicated that more than half of the bacterial sequences were Proteobacteria, predominantly Comamonadaceae. The most numerous genera in this group were Acidovorax (including iron oxidizers, nitrotolulene degraders, and plant pathogens), which accounted for 10 % of assigned bacterial reads.Polaromonas were another 6 % of all bacterial reads, with many assignments to groups capable of degrading polycyclic aromatic hydrocarbons. Albidiferax (iron reducers) and Variovorax(biodegraders of a variety of natural biogenic compounds as well as anthropogenic contaminants such as polycyclic aromatic hydrocarbons and endocrine disruptors) each accounted for an additional 3 % of bacterial reads. Comparison of these data to other publically-available aquatic metagenomes revealed that this stretch of James River is highly similar to the upper Mississippi River, and that these river systems are more similar to aquaculture and sludge ecosystems than they are to lakes or to a pristine section of the upper Amazon River. Taken together, these analyses exposed previously unknown aspects of microbial biodiversity, documented the ecological responses of microbes to urban effects, and revealed the noteworthy presence of 22 human-pathogenic bacterial genera (e.g., Enterobacteriaceae, pathogenic Pseudomonadaceae, and ‘Vibrionales\u27) and 6 pathogenic eukaryotic genera (e.g., Trypanosomatidae and Vahlkampfiidae). This information about pathogen diversity may be used to promote human epidemiological studies, enhance existing water quality monitoring efforts, and increase awareness of the possible health risks associated with recreational use of James River
Early subretinal allograft rejection is characterized by innate immune activity
Successful subretinal transplantation is limited by considerable early graft loss, despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a non-immunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this.
Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation and the neutrophil chemoattractant, KC/GRO/CINC, was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, non-immunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7 and 28 days post-operatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b & F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-ε) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using Imaris software.
The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p<0.001) reduced between post-operative day (POD) 3 (90% ± 4%) and POD 7 (20% ± 7%). CD11b+, F4/80+ and Gr1 Ly-6G+ cells increased significantly (p<0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Co-labeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7 and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-ε was low and did not differ significantly between time-points. By POD 28, no graft cells were detectable and few inflammatory cells remained.
These studies reveal for the first time a critical role for innate immune mechanisms early in subretinal graft rejection. The future success of subretinal transplantation will require more emphasis on techniques to limit innate immune-mediated graft loss, rather than focusing exclusively on suppression of the adaptive immune response
Preparation of Pre-Confluent Retinal Cells Increases Graft Viability In Vitro and In Vivo: A Mouse Model
PURPOSE: Graft failure remains an obstacle to experimental subretinal cell transplantation. A key step is preparing a viable graft, as high levels of necrosis and apoptosis increase the risk of graft failure. Retinal grafts are commonly harvested from cell cultures. We termed the graft preparation procedure "transplant conditions" (TC). We hypothesized that culture conditions influenced graft viability, and investigated whether viability decreased following TC using a mouse retinal pigment epithelial (RPE) cell line, DH01. METHODS: Cell viability was assessed by trypan blue exclusion. Levels of apoptosis and necrosis in vitro were determined by flow cytometry for annexin V and propidium iodide and Western blot analysis for the pro- and cleaved forms of caspases 3 and 7. Graft viability in vivo was established by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and cleaved caspase 3 immunolabeling of subretinal allografts. RESULTS: Pre-confluent cultures had significantly less nonviable cells than post-confluent cultures (6.6%±0.8% vs. 13.1%±0.9%, p<0.01). Cell viability in either group was not altered significantly following TC. Caspases 3 and 7 were not altered by levels of confluence or following TC. Pre-confluent cultures had low levels of apoptosis/necrosis (5.6%±1.1%) that did not increase following TC (4.8%±0.5%). However, culturing beyond confluence led to progressively increasing levels of apoptosis and necrosis (up to 16.5%±0.9%). Allografts prepared from post-confluent cultures had significantly more TUNEL-positive cells 3 hours post-operatively than grafts of pre-confluent cells (12.7%±3.1% vs. 4.5%±1.4%, p<0.001). Subretinal grafts of post-confluent cells also had significantly higher rates of cleaved caspase 3 than pre-confluent grafts (20.2%±4.3% vs. 7.8%±1.8%, p<0.001). CONCLUSION: Pre-confluent cells should be used to maximize graft cell viability
Definitions, Foundations and Associations of Physical Literacy: A Systematic Review
Background: The concept of physical literacy has stimulated increased research attention in recent years—being deployed in physical education, sport participation, and the promotion of physical activity. Independent research groups currently operationalize the construct differently. Objective The purpose of this systematic review was to conduct a systematic review of the physical literacy construct,as reflected in contemporary research literature. Methods: Five databases were searched using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines for systematic reviews. Inclusion criteria were English language, peer reviewed, published by March 2016, and seeking to conceptualize physical literacy. Articles that met these criteria were analysed in relation to three core areas: properties/attributes, philosophicalfoundations and theoretical associations with other constructs. A total of 50 published articles met the inclusion criteria and were analysed qualitatively using inductive thematic analysis.Results: The thematic analysis addressed the three core areas. Under definitions, core attributes that define physical literacy were identified, as well as areas of conflict between different approaches currently being adopted. One relatively clear philosophical approach was prominent in approximately half of the papers, based on a monist/holistic ontology and phenomenological epistemology. Finally, theanalysis identified a number of theoretical associations, including health, physical activity and academic performance.Conclusions: Current literature contains different representations of the physical literacy construct. The costs and benefits of adopting an exclusive approach versus pluralism are considered. Recommendations for both researchers and practitioners focus on identifying and clearly articulating the definitions, philosophical assumptions and expected outcomes prior to evaluating the effectiveness of this emerging concept
A Platform-Independent Method for Detecting Errors in Metagenomic Sequencing Data: DRISEE
We provide a novel method, DRISEE (duplicate read inferred sequencing error estimation), to assess sequencing quality (alternatively referred to as “noise” or “error”) within and/or between sequencing samples. DRISEE provides positional error estimates that can be used to inform read trimming within a sample. It also provides global (whole sample) error estimates that can be used to identify samples with high or varying levels of sequencing error that may confound downstream analyses, particularly in the case of studies that utilize data from multiple sequencing samples. For shotgun metagenomic data, we believe that DRISEE provides estimates of sequencing error that are more accurate and less constrained by technical limitations than existing methods that rely on reference genomes or the use of scores (e.g. Phred). Here, DRISEE is applied to (non amplicon) data sets from both the 454 and Illumina platforms. The DRISEE error estimate is obtained by analyzing sets of artifactual duplicate reads (ADRs), a known by-product of both sequencing platforms. We present DRISEE as an open-source, platform-independent method to assess sequencing error in shotgun metagenomic data, and utilize it to discover previously uncharacterized error in de novo sequence data from the 454 and Illumina sequencing platforms
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
- …