399 research outputs found

    Hand lay-up of complex geometries-prediction, capture and feedback

    Get PDF

    Observation of Neutral Sodium Above Mercury During the Transit of November 8, 2006

    Get PDF
    We mapped the absorption of sunlight by sodium vapor in the exosphere of Mercury during the transit of Mercury on November 8, 2006, using the IBIS Interferometric BIdimensional Spectrometer at the Dunn Solar Telescope operated by the National Solar Observatory at Sunspot, New Mexico. The measurements were reduced to line-of-sight equivalent widths for absorption at the sodium D2 line around the shadow of Mercury. The sodium absorption fell off exponentially with altitude up to about 600 km. However there were regions around north and south polar-regions where relatively uniform sodium absorptions extended above 1000 km. We corrected the 0-600 km altitude profiles for seeing blur using the measured point spread function. Analysis of the corrected altitude distributions yielded surface densities, zenith column densities, temperatures and scale heights for sodium all around the planet. Sodium absorption on the dawn side equatorial terminator was less than on the dusk side, different from previous observations of the relative absorption levels. We also determined Earthward velocities for sodium atoms, and line widths for the absorptions. Earthward velocities resulting from radiation pressure on sodium averaged 0.8 km/s, smaller than a prediction of 1.5 km/s. Most line widths were in the range of 20 mA after correction for instrumental broadening, corresponding to temperatures in the range of 1000 K

    Biological invasion hotspots: a trait-based perspective reveals new sub-continental patterns

    Get PDF
    Invader traits (including plant growth form) may play an important, and perhaps overlooked, role in determining macroscale patterns of biological invasions and therefore warrant greater consideration in future investigations aimed at understanding these patterns. To assess this need, we used empirical data from a national-level survey of forest in the contiguous 48 states of the USA to identify geographic hotspots of forest plant invasion for three distinct invasion characteristics: invasive species richness, trait richness (defined as the number of the five following plant growth forms represented by the invasive plants present at a given location: forbs, grasses, shrubs, trees, and vines), and species richness within each growth form. Three key findings emerged. 1) Th e hotspots identified encompassed from 9 to 23% of the total area of our study region, thereby revealing many forests to be not only invaded, but highly invaded. 2) Substantial spatial disagreement among hotspots of invasive species richness, invasive trait richness, and species richness of invasive plants within each growth form revealed many locations to be hotspots for invader traits, or for particular growth forms of invasive plants, rather than for invasive plants in general. 3) Despite eastern forests exhibiting higher levels of plant invasion than western forests, species richness for invasive forbs and grasses in the west were respectively greater than and equivalent to levels found in the east. Contrasting patterns between eastern and western forests in the number of invasive species detected for each growth form combined with the spatial disagreement found among hotspot types suggests trait-based variability in invasion drivers. Our findings reveal invader traits to be an important contributor to macroscale invasion patterns

    High modulus regenerated cellulose fibers spun from a low molecular weight microcrystalline cellulose solution

    Get PDF
    We have developed a novel process to convert low molecular weight microcrystalline cellulose into stiff regenerated cellulose fibers using a dry-jet wet fiber spinning process. Highly aligned cellulose fibers were spun from optically anisotropic microcrystalline cellulose/1-ethyl-3-methylimidazolium diethyl phosphate (EMImDEP) solutions. As the cellulose concentration increased from 7.6 to 12.4 wt %, the solution texture changed from completely isotropic to weakly nematic. Higher concentration solutions (>15 wt %) showed strongly optically anisotropic patterns, with clearing temperatures ranging from 80 to 90 °C. Cellulose fibers were spun from 12.4, 15.2, and 18.0 wt % cellulose solutions. The physical properties of these fibers were studied by scanning electron microscopy (SEM), wide angle X-ray diffraction (WAXD), and tensile testing. The 18.0 wt % cellulose fibers, with an average diameter of ∼20 μm, possessed a high Young’s modulus up to ∼22 GPa, moderately high tensile strength of ∼305 MPa, as well as high alignment of cellulose chains along the fiber axis confirmed by X-ray diffraction. This process presents a new route to convert microcrystalline cellulose, which is usually used for low mechanical performance applications (matrix for pharmaceutical tablets and food ingredients, etc.) into stiff fibers which can potentially be used for high-performance composite materials

    Comparison of SIV and HIV-1 Genomic RNA Structures Reveals Impact of Sequence Evolution on Conserved and Non-Conserved Structural Motifs

    Get PDF
    RNA secondary structure plays a central role in the replication and metabolism of all RNA viruses, including retroviruses like HIV-1. However, structures with known function represent only a fraction of the secondary structure reported for HIV-1NL4-3. One tool to assess the importance of RNA structures is to examine their conservation over evolutionary time. To this end, we used SHAPE to model the secondary structure of a second primate lentiviral genome, SIVmac239, which shares only 50% sequence identity at the nucleotide level with HIV-1NL4-3. Only about half of the paired nucleotides are paired in both genomic RNAs and, across the genome, just 71 base pairs form with the same pairing partner in both genomes. On average the RNA secondary structure is thus evolving at a much faster rate than the sequence. Structure at the Gag-Pro-Pol frameshift site is maintained but in a significantly altered form, while the impact of selection for maintaining a protein binding interaction can be seen in the conservation of pairing partners in the small RRE stems where Rev binds. Structures that are conserved between SIVmac239 and HIV-1NL4-3 also occur at the 5′ polyadenylation sequence, in the plus strand primer sites, PPT and cPPT, and in the stem-loop structure that includes the first splice acceptor site. The two genomes are adenosine-rich and cytidine-poor. The structured regions are enriched in guanosines, while unpaired regions are enriched in adenosines, and functionaly important structures have stronger base pairing than nonconserved structures. We conclude that much of the secondary structure is the result of fortuitous pairing in a metastable state that reforms during sequence evolution. However, secondary structure elements with important function are stabilized by higher guanosine content that allows regions of structure to persist as sequence evolution proceeds, and, within the confines of selective pressure, allows structures to evolve
    • …
    corecore