74 research outputs found
Recommended from our members
Eye safe short range standoff aerosol cloud finder.
Because many solid objects, both stationary and mobile, will be present in an indoor environment, the design of an indoor aerosol cloud finding lidar (light detection and ranging) instrument presents a number of challenges. The cloud finder must be able to discriminate between these solid objects and aerosol clouds as small as 1-meter in depth in order to probe suspect clouds. While a near IR ({approx}1.5-{micro}m) laser is desirable for eye-safety, aerosol scattering cross sections are significantly lower in the near-IR than at visible or W wavelengths. The receiver must deal with a large dynamic range since the backscatter from solid object will be orders of magnitude larger than for aerosol clouds. Fast electronics with significant noise contributions will be required to obtain the necessary temporal resolution. We have developed a laboratory instrument to detect aerosol clouds in the presence of solid objects. In parallel, we have developed a lidar performance model for performing trade studies. Careful attention was paid to component details so that results obtained in this study could be applied towards the development of a practical instrument. The amplitude and temporal shape of the signal return are analyzed for discrimination of aerosol clouds in an indoor environment. We have assessed the feasibility and performance of candidate approaches for a fieldable instrument. With the near-IR PMT and a 1.5-{micro}m laser source providing 20-{micro}J pulses, we estimate a bio-aerosol detection limit of 3000 particles/l
Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco–Sjögren syndrome
Endoplasmic reticulum (ER) stress has been linked to the onset and progression of many diseases. SIL1 is an adenine nucleotide exchange factor of the essential ER lumen chaperone HSPA5/BiP that senses ER stress and is involved in protein folding. Mutations in the Sil1 gene have been associated with Marinesco–Sjögren syndrome, hallmarks of which include ataxia and cerebellar atrophy. We have previously shown that loss of SIL1 function in mouse results in ER stress, ubiquitylated protein inclusions, and degeneration of specific Purkinje cells in the cerebellum. Here, we report that overexpression of HYOU1/ORP150, an exchange factor that works in parallel to SIL1, prevents ER stress and rescues neurodegeneration in Sil1−/− mice, whereas decreasing expression of HYOU1 exacerbates these phenotypes. In addition, loss of DNAJC3/p58IPK, a co-chaperone that promotes ATP hydrolysis by BiP, ameliorates ER stress and neurodegeneration in Sil1−/− mice. These findings suggest that alterations in the nucleotide exchange cycle of BiP cause ER stress and neurodegeneration in Sil1-deficient mice. Our results present the first evidence of important genetic modifiers of Marinesco–Sjögren syndrome, and provide additional pathways for therapeutic intervention for this, and other ER stress-induced, diseases
Cortical injury in multiple sclerosis; the role of the immune system
The easily identifiable, ubiquitous demyelination and neuronal damage that occurs within the cerebral white matter of patients with multiple sclerosis (MS) has been the subject of extensive study. Accordingly, MS has historically been described as a disease of the white matter. Recently, the cerebral cortex (gray matter) of patients with MS has been recognized as an additional and major site of disease pathogenesis. This acknowledgement of cortical tissue damage is due, in part, to more powerful MRI that allows detection of such injury and to focused neuropathology-based investigations. Cortical tissue damage has been associated with inflammation that is less pronounced to that which is associated with damage in the white matter. There is, however, emerging evidence that suggests cortical damage can be closely associated with robust inflammation not only in the parenchyma, but also in the neighboring meninges. This manuscript will highlight the current knowledge of inflammation associated with cortical tissue injury. Historical literature along with contemporary work that focuses on both the absence and presence of inflammation in the cerebral cortex and in the cerebral meninges will be reviewed
Genome Scan of M. tuberculosis Infection and Disease in Ugandans
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is an enduring public health problem globally, particularly in sub-Saharan Africa. Several studies have suggested a role for host genetic susceptibility in increased risk for TB but results across studies have been equivocal. As part of a household contact study of Mtb infection and disease in Kampala, Uganda, we have taken a unique approach to the study of genetic susceptibility to TB, by studying three phenotypes. First, we analyzed culture confirmed TB disease compared to latent Mtb infection (LTBI) or lack of Mtb infection. Second, we analyzed resistance to Mtb infection in the face of continuous exposure, defined by a persistently negative tuberculin skin test (PTST-); this outcome was contrasted to LTBI. Third, we analyzed an intermediate phenotype, tumor necrosis factor-alpha (TNFα) expression in response to soluble Mtb ligands enriched with molecules secreted from Mtb (culture filtrate). We conducted a full microsatellite genome scan, using genotypes generated by the Center for Medical Genetics at Marshfield. Multipoint model-free linkage analysis was conducted using an extension of the Haseman-Elston regression model that includes half sibling pairs, and HIV status was included as a covariate in the model. The analysis included 803 individuals from 193 pedigrees, comprising 258 full sibling pairs and 175 half sibling pairs. Suggestive linkage (p<10−3) was observed on chromosomes 2q21-2q24 and 5p13-5q22 for PTST-, and on chromosome 7p22-7p21 for TB; these findings for PTST- are novel and the chromosome 7 region contains the IL6 gene. In addition, we replicated recent linkage findings on chromosome 20q13 for TB (p = 0.002). We also observed linkage at the nominal α = 0.05 threshold to a number of promising candidate genes, SLC11A1 (PTST- p = 0.02), IL-1 complex (TB p = 0.01), IL12BR2 (TNFα p = 0.006), IL12A (TB p = 0.02) and IFNGR2 (TNFα p = 0.002). These results confirm not only that genetic factors influence the interaction between humans and Mtb but more importantly that they differ according to the outcome of that interaction: exposure but no infection, infection without progression to disease, or progression of infection to disease. Many of the genetic factors for each of these stages are part of the innate immune system
Technical advance: autofluorescence-based sorting: rapid and nonperturbing isolation of ultrapure neutrophils to determine cytokine production
The technical limitations of isolating neutrophils without contaminating leukocytes, while concurrently minimizing neutrophil activation, is a barrier to determining specific neutrophil functions. We aimed to assess the use of FACS for generating highly pure quiescent neutrophil populations in an antibody-free environment. Peripheral blood human granulocytes and murine bone marrow-derived neutrophils were isolated by discontinuous Percoll gradient and flow-sorted using FSC/SSC profiles and differences in autofluorescence. Postsort purity was assessed by morphological analysis and flow cytometry. Neutrophil activation was measured in unstimulated-unsorted and sorted cells and in response to fMLF, LTB(4), and PAF by measuring shape change, CD62L, and CD11b expression; intracellular calcium flux; and chemotaxis. Cytokine production by human neutrophils was also determined. Postsort human neutrophil purity was 99.95% (sem=0.03; n=11; morphological analysis), and 99.68% were CD16(+ve) (sem=0.06; n=11), with similar results achieved for murine neutrophils. Flow sorting did not alter neutrophil activation or chemotaxis, relative to presorted cells, and no differences in response to agonists were observed. Stimulated neutrophils produced IL-1β, although to a lesser degree than CXCL8/IL-8. The exploitation of the difference in autofluorescence between neutrophils and eosinophils by FACS is a quick and effective method for generating highly purified populations for subsequent in vitro study
NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells
Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases
The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds
DataSheet_1_An integrated approach for physical, economic, and demographic evaluation of coastal flood hazard adaptation in Santa Monica Bay, California.pdf
The increased risk of coastal flooding associated with climate-change driven sea level rise threatens to displace communities and cause substantial damage to infrastructure. Site-specific adaptation planning is necessary to mitigate the negative impacts of flooding on coastal residents and the built environment. Cost-benefit analyses used to evaluate coastal adaption strategies have traditionally focused on economic considerations, often overlooking potential demographic impacts that can directly influence vulnerability in coastal communities. Here, we present a transferable framework that couples hydrodynamic modeling of flooding driven by sea level rise and storm scenarios with site-specific building stock and census block-level demographic data. We assess the efficacy of multiple coastal adaptation strategies at reducing flooding, economic damages, and impacts to the local population. We apply this framework to evaluate a range of engineered, nature-based, and hybrid adaptation strategies for a portion of Santa Monica Bay, California. Overall, we find that dual approaches that provide protection along beaches using dunes or seawalls and along inlets using sluice gates perform best at reducing or eliminating flooding, damages, and population impacts. Adaptation strategies that include a sluice gate and partial or no protection along the beach are effective at reducing flooding around inlets but can exacerbate flooding elsewhere, leading to unintended impacts on residents. Our results also indicate trade-offs between economic and social risk-reduction priorities. The proposed framework allows for a comprehensive evaluation of coastal protection strategies across multiple objectives. Understanding how coastal adaptation strategies affect hydrodynamic, economic, and social factors at a local scale can enable more effective and equitable planning approaches.</p
Modulating Supramolecular Binding of Carbon Dioxide in a Redox-Active Porous Metal-Organic Framework
Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host–guest systems. Here we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(VIII) {[VIII2(OH)2(L)], LH4=biphenyl-3,3′,5,5′-tetracarboxylic acid} can be oxidized to isostructural MFM-300(VIV), [VIV2O2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(VIII) shows the second highest CO2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g−1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO2, which binds in an end-on manner, =1.863(1) Å. In contrast, CO2-loaded MFM-300(VIV) shows CO2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique ···c.g.phenyl interaction [3.069(2), 3.146(3) Å]. The macroscopic packing of CO2 in the pores is directly influenced by these primary binding sites
- …