987 research outputs found

    Application of Room Temperature Ionic Liquids to the Development of Electrochemical Lipase Biosensing Systems for Water-Insoluble Analytes

    Get PDF
    Biosensors have been prepared by modification of glassy carbon electrodes with functionalised multiwalled carbon nanotubes (MWCNT) dispersed in the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethane)sulfonimide (BmimNTF2) and with lipase cross-linked with glutaraldehyde. The biosensor was applied to the determination of olive oil triglycerides by cyclic voltammetry. A phosphate buffer (pH 7.0) / BmimNO3 mixture is a better electrolyte than aqueous buffer alone. The response signal in the buffer-BmimNO3 mixture was found to increase with the number of cycles until a constant current was achieved. The calibration curve obtained exhibited a sigmoid-shape and a fourparameter model was used to fit the data which gave a limit of detection of 0.11 μg mL−1. Close inspection of such calibration curves showed two distinct linear regions indicating changes in the mechanism of the electrochemical response. Overall, the oxidative analytical response was found to be due to phenolic compounds present in the olive oil, released in the presence of lipase, rather than due to triglycerides per se. It was also found that there were no interferences from either cholesterol or glycerol. A possible mechanism of olive oil determination at a MWCNT-BmimNTF2/Lip biosensor is proposed

    Influence of Mid-Latitude Cyclones on European Background Surface Ozone Investigated in Observations, MACC and MERRA-2 Reanalyses

    Get PDF
    The relationship between springtime mid-latitude cyclones and background ozone at two rural monitoring sites on the west coast of Europe -- Mace Head, Ireland and Monte Velho, Portugal -- is explored using a combination of observations and three reanalyses: 1) the European Centre for Medium-Range Weather Forecasts' (ECMWF) ERA-Interim reanalysis, 2) the Monitoring Atmospheric Composition and Climate (MACC) reanalysis and 3) NASA's Modern-Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2) reanalysis. The ERA-Interim cyclone tracks are used here to establish the long-term relationship between cyclones and ozone observations (since 1988). The MACC reanalysis data set, which covers the period 2003-2012, is produced with the ECMWF integrated forecast system (IFS) model two-way coupled to a chemistry transport model (CTM). Since the MACC reanalysis uses a similar atmospheric model to ERA-Interim, MACC is used to explore the mechanisms within the case study cyclones that can influence surface ozone concentrations at Mace Head and Monte Velho. The MERRA-2 reanalysis also provides 3D distributions of ozone, although less ideal for analysis of surface ozone concentrations since MERRA-2 ozone under represents ozone variability outside the stratosphere as it does not have a detailed chemistry scheme or emission sources for the troposphere. The MERRA-2 reanalysis, which has the potential to identify more features within the cyclones as the resolution is higher than the MACC reanalysis, is used in conjunction with the MACC reanalysis to provide a measure of uncertainty to the case study analysis. We found the main source of high ozone to these two sites is from the stratosphere, which is well represented in both the MERRA-2 and the MACC reanalyses, either from direct injection into the cyclone or associated with aged airstreams from decaying downstream cyclones that can become entrained and descend toward the surface within new cyclones over the NA region

    Senior Recital: Kevin Doherty, baritone

    Get PDF

    Electricity Demand Due to Policy Change in the U.K.

    Get PDF
    This paper examines United Kingdom Electricity Demand with regards to the Climate Change Act, which was enacted in November of 2008. Through actual demand data obtained from Nationalgrid, a U.K. based gas and electric utility company, this paper seeks to find out if the Climate Change Act has started to achieve its goal of reducing carbon emissions by looking at trends of electricity demand. Burning fossil fuels to produce electricity is a major contributor to global warming in the U.K. and policies enacted do not always live up to their ultimate goals. This paper tests how on track the Climate Change Act actually is to meeting its long term goals of cutting emissions and if an individual policy can actually have more than minimal effects on decreasing electricity demand GHG emissions. I find that their need to be a more large scale efforts towards reducing emissions and that no one individual policy like the Climate Change Act of 2008 will have any large significant effect on reduction in emissions

    SAGE-GROUSE AND ENERGY DEVELOPMENT: INTEGRATING SCIENCE WITH CONSERVATION PLANNING TO REDUCE IMPACTS

    Get PDF
    Effective conservation planning in the face of rapid land use change requires knowledge of which habitats are selected at landscape scales, where those habitats are located, and how species ultimately respond to anthropogenic disturbance. I assessed sage-grouse (Centrocercus urophasianus) large scale habitat ecology and response to energy development in the winter and nesting seasons using radio-marked individuals in the Powder River Basin, Montana and Wyoming, USA. Landscape scale percent sagebrush (Artemisia spp.) cover at 4-km2 was the strongest predictor of use by sage-grouse in winter. After controlling for vegetation and topography, the addition the density of coal-bed natural gas wells within 4 km2 improved model fit (AIC -6.66, wi = 0.965) and indicated that sage-grouse avoided energy development. Nesting analyses showed that landscape context must be considered in addition to local scale habitat features (wi = 0.96). Findings provide managers a hierarchical filter in which to manage breeding habitats. Twice the amount of nesting habitat at 3, 5 and 10-km scales surrounded active leks versus random locations. Spatially explicit nesting and wintering models predicted independent sage-grouse locations (validation R2 ≥ 0.98). I incorporated knowledge of energy impacts into a study design that tested for threshold responses at regional scales analyzing 1,344 leks in Wyoming from 1997-2007. Potential impacts were indiscernible at 1-12 wells within 32.2 km2 of a lek (~1 well / 640 ac). At higher wells densities a time-lag showed higher rates of lek inactivity and steeper declines in bird abundance 4 years after than immediately following development. I spatially prioritized core areas for breeding sage-grouse across Wyoming, Montana, Colorado, Utah and the Dakotas and assessed risk of future energy development. Findings showed that bird abundance varies by state, core areas contain a disproportionately large segment of the breeding population and that risk of development within core areas varies regionally. My analyses document behavioral and demographic responses to energy development, offer new insights into large scale ecology of greater sage-grouse and provide resource managers with practical tools to guide conservation

    Engaging Undergraduates in Science Research: Not Just About Faculty Willingness.

    Get PDF
    Despite the many benefits of involving undergraduates in research and the growing number of undergraduate research programs, few scholars have investigated the factors that affect faculty members' decisions to involve undergraduates in their research projects. We investigated the individual factors and institutional contexts that predict faculty members' likelihood of engaging undergraduates in their research project(s). Using data from the Higher Education Research Institute's 2007-2008 Faculty Survey, we employ hierarchical generalized linear modeling to analyze data from 4,832 science, technology, engineering, and mathematics (STEM) faculty across 194 institutions to examine how organizational citizenship behavior theory and social exchange theory relate to mentoring students in research. Key findings show that faculty who work in the life sciences and those who receive government funding for their research are more likely to involve undergraduates in their research project(s). In addition, faculty at liberal arts or historically Black colleges are significantly more likely to involve undergraduate students in research. Implications for advancing undergraduate research opportunities are discussed
    corecore