https://ntrs.nasa.gov/search.jsp?R=20180004425 2019-08-31T15:28:49+00:00Z

Influence of mid-latitude cyclones on European background surface ozone investigated in observations, MACC and MERRA-2 reanalyses

K. Emma Knowland^{1,2}, Ruth Doherty³, Kevin Hodges⁴ and Lesley Ott² ¹USRA/GESTAR; ²NASA GSFC, Global Modeling and Assimilation Office (GMAO), Greenbelt, MD;

³School of Geoscience, University of Edinburgh, Edinburgh, UK; ⁴Deptartment of Meteorology, University of Reaching, Reading, UK

Take Home Messages!

First study to our knowledge to quantify the influence extratropical cyclones have on the temporal variability of springtime surface ozone (O₃) measured on the west coast of Europe when cyclones are nearby.

We show passing cyclones have a discernible influence on surface O₃ concentrations.

In-depth findings from four case studies, using a combination of reanalyses and a modeled tracer, demonstrate there are several transport pathways before O₃-rich air eventually reaches the surface. (Knowland et al., 2017 ACP)

Storm tracks and O₃

1. Storm tracks were identified in ERA-Interim and MACC using the objective feature tracking algorithm, TRACK (Hodges 1995, 1999).

2. O₃ at Mace Head and Monte Velho were sorted each season, to remove the increasing background signal, and ranked by percentiles (pc)

3. Tracks were matched to concurrent surface O₃ observations at Mace Head and Monte Velho.

Mace Head	% tracks "high" O ₃ O ₃ > 75 th pc	# years more tracks with high O ₃ (# significant)	% tracks "low" O ₃ O ₃ > 75 th pc	# years more tracks with low O ₃ (# significant)
North	<mark>52 %</mark>	18 (15)	37 %	5 (0)
Center	51 %	17 (6)	41 %	6 (1)
South	45 %	7 (2)	53 %	16 (8)

When cyclones track north of 53°N, there is a significant relationship with high levels of surface O_3 (> 75th pc). The further away a cyclone is from the main storm track, more likely associated with low O₃ (< 25th pc).

4. Case study cyclones (Fig 2 below) identified for a) high O₃

- Passing through North or South regions b)
- Strong, top 20 % based on maximum ζ_{850hPa} c)

2012

a) 701

S1

V1

and oriented in the

movement

50

40

d) two consecutive time steps with high O₃

- Met and chemical variables on 12 pressure levels from 1000 to 200 hPa
- > Relative vorticity at 850 hPa (ζ_{850hPa}), mean sea level pressure (MSLP), temperature (T), specific humidity (q), winds (u,v), vertical velocity (ω) , equivalent potential temperature (θ_{e}), and O₃.

1, 2011 "The ERA-Interim reanalysis: comparation and performance or we await and a 1,2017 "The Modent-Fra Retrospective Analysis for Research and Applications, Vers K.I. 1995 "Feature tracking on the unit-sphere" Mon. Wea. Rev., 123, 3583-3465 K.I. 1997 "Madpite constraints for feature tracking", Mon. Wea. Rev., 127, 1352-1373 al., 2013 "The MACC reanalysis: an 8 yr data set of atmospheric composition", Atmos. A et al., 2017 "The Minerce of mid-situated cyclones on tracpean background surface Phys., **13**, 4073-4109 Atmos. Chem. Phys., **17**, 12421-12447, doi: 10.5194/acp-17-12421-2017

Strong cyclone

PVU, think black line), ω (white= lescent, black=ascent), MSLP owest pressure level), θ_e (dotted lines). Mace Head (black dot)

and