240 research outputs found

    Pulmonary-Resident Memory Lymphocytes: Pivotal Orchestrators of Local Immunity Against Respiratory Infections

    Get PDF
    There is increasing evidence that lung-resident memory T and B cells play a critical role in protecting against respiratory reinfection. With a unique transcriptional and phenotypic profile, resident memory lymphocytes are maintained in a quiescent state, constantly surveying the lung for microbial intruders. Upon reactivation with cognate antigen, these cells provide rapid effector function to enhance immunity and prevent infection. Immunization strategies designed to induce their formation, alongside novel techniques enabling their detection, have the potential to accelerate and transform vaccine development. Despite most data originating from murine studies, this review will discuss recent insights into the generation, maintenance and characterisation of pulmonary resident memory lymphocytes in the context of respiratory infection and vaccination using recent findings from human and non-human primate studies

    A combined clinical and biomarker approach to predict diuretic response in acute heart failure

    Get PDF
    Background: Poor diuretic response in acute heart failure is related to poor clinical outcome. The underlying mechanisms and pathophysiology behind diuretic resistance are incompletely understood. We evaluated a combined approach using clinical characteristics and biomarkers to predict diuretic response in acute heart failure (AHF). Methods and results: We investigated explanatory and predictive models for diuretic response—weight loss at day 4 per 40 mg of furosemide—in 974 patients with AHF included in the PROTECT trial. Biomarkers, addressing multiple pathophysiological pathways, were determined at baseline and after 24 h. An explanatory baseline biomarker model of a poor diuretic response included low potassium, chloride, hemoglobin, myeloperoxidase, and high blood urea nitrogen, albumin, triglycerides, ST2 and neutrophil gelatinase-associated lipocalin (r2 = 0.086). Diuretic response after 24 h (early diuretic response) was a strong predictor of diuretic response (β = 0.467, P < 0.001; r2 = 0.523). Addition of diuretic response after 24 h to biomarkers and clinical characteristics significantly improved the predictive model (r2 = 0.586, P < 0.001). Conclusions: Biomarkers indicate that diuretic unresponsiveness is associated with an atherosclerotic profile with abnormal renal function and electrolytes. However, predicting diuretic response is difficult and biomarkers have limited additive value. Patients at risk of poor diuretic response can be identified by measuring early diuretic response after 24 h

    Entangled Rings

    Get PDF
    Consider a ring of N qubits in a translationally invariant quantum state. We ask to what extent each pair of nearest neighbors can be entangled. Under certain assumptions about the form of the state, we find a formula for the maximum possible nearest-neighbor entanglement. We then compare this maximum with the entanglement achieved by the ground state of an antiferromagnetic ring consisting of an even number of spin-1/2 particles. We find that, though the antiferromagnetic ground state does not maximize the nearest-neighbor entanglement relative to all other states, it does so relative to other states having zero z-component of spin.Comment: 19 pages, no figures; v2 includes new results; v3 corrects a numerical error for the case N=

    Autoantibodies Produced at the Site of Tissue Damage Provide Evidence of Humoral Autoimmunity in Inclusion Body Myositis

    Get PDF
    Inclusion body myositis (IBM) belongs to a group of muscle diseases known as the inflammatory myopathies. The presence of antibody-secreting plasma cells in IBM muscle implicates the humoral immune response in this disease. However, whether the humoral immune response actively contributes to IBM pathology has not been established. We sought to investigate whether the humoral immune response in IBM both in the periphery and at the site of tissue damage was directed towards self-antigens. Peripheral autoantibodies present in IBM serum but not control serum recognized self-antigens in both muscle tissue and human-derived cell lines. To study the humoral immune response at the site of tissue damage in IBM patients, we isolated single plasma cells directly from IBM-derived muscle tissue sections and from these cells, reconstructed a series of recombinant immunoglobulins (rIgG). These rIgG, each representing a single muscle-associated plasma cell, were examined for reactivity to self-antigens. Both, flow cytometry and immunoblotting revealed that these rIgG recognized antigens expressed by cell lines and in muscle tissue homogenates. Using a mass spectrometry-based approach, Desmin, a major intermediate filament protein, expressed abundantly in muscle tissue, was identified as the target of one IBM muscle-derived rIgG. Collectively, these data support the view that IBM includes a humoral immune response in both the periphery and at the site of tissue damage that is directed towards self-antigens

    Serum potassium levels and outcome in acute heart failure (data from the PROTECT and COACH trials)

    Get PDF
    Serum potassium is routinely measured at admission for acute heart failure (AHF), but information on association with clinical variables and prognosis is limited. Potassium measurements at admission were available in 1,867 patients with AHF in the original cohort of 2,033 patients included in the Patients Hospitalized with acute heart failure and Volume Overload to Assess Treatment Effect on Congestion and Renal FuncTion trial. Patients were grouped according to low potassium (<3.5 mEq/l), normal potassium (3.5 to 5.0 mEq/l), and high potassium (>5.0 mEq/l) levels. Results were verified in a validation cohort of 1,023 patients. Mean age of patients was 71 – 11 years, and 66% were men. Low potassium was present in 115 patients (6%), normal potassium in 1,576 (84%), and high potassium in 176 (9%). Potassium levels increased during hospitalization (0.18 – 0.69 mEq/l). Patients with high potassium more often used angiotensin-converting enzyme inhibitors and mineralocorticoid receptor antagonists before admission, had impaired baseline renal function and a better diuretic response (p [ 0.005), independent of mineralocorticoid receptor antagonist usage. During 180-day follow-up, a total of 330 patients (18%) died. Potassium levels at admission showed a univariate linear association with mortality (hazard ratio [log] 2.36, 95% confidence interval 1.07 to 5.23; p [ 0.034) but not after multivariate adjustment. Changes of potassium levels during hospitalization or potassium levels at discharge were not associated with outcome after multivariate analysis. Results in the validation cohort were similar to the index cohort. In conclusion, high potassium levels at admission are associated with an impaired renal function but a better diuretic response. Changes in potassium levels are common, and overall levels increase during hospitalization. In conclusion, potassium levels at admission or its change during hospitalization are not associated with mortality after multivariate adjustment

    Models of Somatic Hypermutation Targeting and Substitution Based on Synonymous Mutations from High-Throughput Immunoglobulin Sequencing Data

    Get PDF
    Analyses of somatic hypermutation (SHM) patterns in B cell immunoglobulin (Ig) sequences contribute to our basic understanding of adaptive immunity, and have broad applications not only for understanding the immune response to pathogens, but also to determining the role of SHM in autoimmunity and B cell cancers. Although stochastic, SHM displays intrinsic biases that can confound statistical analysis, especially when combined with the particular codon usage and base composition in Ig sequences. Analysis of B cell clonal expansion, diversification, and selection processes thus critically depends on an accurate background model for SHM micro-sequence targeting (i.e., hot/cold-spots) and nucleotide substitution. Existing models are based on small numbers of sequences/mutations, in part because they depend on data from non-coding regions or non-functional sequences to remove the confounding influences of selection. Here, we combine high-throughput Ig sequencing with new computational analysis methods to produce improved models of SHM targeting and substitution that are based only on synonymous mutations, and are thus independent of selection. The resulting “S5F” models are based on 806,860 Synonymous mutations in 5-mer motifs from 1,145,182 Functional sequences and account for dependencies on the adjacent four nucleotides (two bases upstream and downstream of the mutation). The estimated profiles can explain almost half of the variance in observed mutation patterns, and clearly show that both mutation targeting and substitution are significantly influenced by neighboring bases. While mutability and substitution profiles were highly conserved across individuals, the variability across motifs was found to be much larger than previously estimated. The model and method source code are made available at http://clip.med.yale.edu/SH

    Improving object segmentation by using EEG signals and rapid serial visual presentation

    Get PDF
    This paper extends our previous work on the potential of EEG-based brain computer interfaces to segment salient objects in images. The proposed system analyzes the Event Related Potentials (ERP) generated by the rapid serial visual presentation of windows on the image. The detection of the P300 signal allows estimating a saliency map of the image, which is used to seed a semi-supervised object segmentation algorithm. Thanks to the new contributions presented in this work, the average Jaccard index was improved from 0.470.47 to 0.660.66 when processed in our publicly available dataset of images, object masks and captured EEG signals. This work also studies alternative architectures to the original one, the impact of object occupation in each image window, and a more robust evaluation based on statistical analysis and a weighted F-score

    Smoke, curtains and mirrors: the production of race through time and title registration

    Get PDF
    This article analyses the temporal effects of title registration and their relationship to race. It traces the move away from the retrospection of pre-registry common law conveyancing and toward the dynamic, future-oriented Torrens title registration system. The Torrens system, developed in early colonial Australia, enabled the production of ‘clean’, fresh titles that were independent of their predecessors. Through a process praised by legal commentators for ‘curing’ titles of their pasts, this system produces indefeasible titles behind its distinctive ‘curtain’ and ‘mirror’, which function similarly to magicians’ smoke and mirrors by blocking particular realities from view. In the case of title registries, those realities are particular histories of and relationships with land, which will not be protected by property law and are thus made precarious. Building on interdisciplinary work which theorises time as a social tool, I argue that Torrens title registration produces a temporal order which enables land market coordination by rendering some relationships with land temporary and making others indefeasible. This ordering of relationships with land in turn has consequences for the human subjects who have those relationships, cutting futures short for some and guaranteeing permanence to others. Engaging with Renisa Mawani and other critical race theorists, I argue that the categories produced by Torrens title registration systems materialise as race
    corecore