42 research outputs found

    Safety of oral ivermectin during pregnancy: a systematic review and meta-analysis

    Get PDF
    Background: About 3·7 billion doses of ivermectin have been distributed in mass drug administration (MDA) campaigns globally over the past 30 years. At 10–100 times higher than current human doses, ivermectin is a known teratogen in mammals. During these campaigns with recommended doses, pregnant women might be inadvertently exposed. We therefore aimed to evaluate the existing evidence for serious and non-serious adverse events after ivermectin exposure in pregnant women. Methods: For this systematic review and meta-analysis, we searched relevant databases and trial registry platforms on July 15, 2018, for randomised controlled trials (RCTs) and observational studies that reported adverse events in pregnant women. We did not use language or date restrictions. Outcomes of interest were spontaneous abortions, stillbirths, congenital anomalies, and neonatal death (serious adverse events), as well as maternal morbidity, preterm births, and low birthweight (adverse events). The risk of bias was assessed using the Newcastle-Ottawa Scale for observational studies and the Cochrane Risk of Bias Tool for RCTs. We did the meta-analysis of observational studies and RCTs separately. The quality of evidence was assessed using the GRADE approach. The study protocol is registered with PROSPERO, protocol CRD42016046914. Findings: We identified 147 records, of which only five observational studies and one RCT were included for quantitative analysis; these studies were published between 1990 and 2008, and were done in six African countries. 893 women with 899 pregancy outcomes were included, of whom 496 pregnant women (500 pregnancy outcomes) received ivermectin inadvertently during MDA campaigns in the observational studies and 397 pregnant women (399 pregnancy outcomes) purposely received ivermectin as part of the open-label RCT. No study reported neonatal deaths, maternal morbidity, preterm births, or low birthweight. It is unclear whether exposure to ivermectin during pregnancy increases the risk of spontaneous abortions and stillbirths (odds ratio [OR] 1·15 [95% CI 0·75–1·78] with very low certainty of evidence for the four observational studies and 0·62 [0·18–2·14] with very low certainty of evidence for the RCT) or congenital anomalies (OR 1·69 [95% CI 0·83–3·41] with very low certainty of evidence for the five observational studies and 1·10 [0·07–17·65] with very low certainty of evidence for the RCT). Interpretation: There is insufficient evidence to conclude on the safety profile of ivermectin during pregnancy. Treatment campaigns should focus additional efforts on preventing inadvertent treatment of pregnant women

    Activity of Ivermectin and Its Metabolites against Asexual Blood Stage Plasmodium falciparum and Its Interactions with Antimalarial Drugs

    Get PDF
    Ivermectin is an endectocide used widely to treat a variety of internal and external parasites. Field trials of ivermectin mass drug administration for malaria transmission control have demonstrated a reduction of Anopheles mosquito survival and human malaria incidence. Ivermectin will mostly be deployed together with artemisinin-based combination therapies (ACT), the first-line treatment of falciparum malaria. It has not been well established if ivermectin has activity against asexual stage Plasmodium falciparum or if it interacts with the parasiticidal activity of other antimalarial drugs. This study evaluated antimalarial activity of ivermectin and its metabolites in artemisinin-sensitive and artemisinin-resistant P. falciparum isolates and assessed in vitro drug-drug interaction with artemisinins and its partner drugs. The concentration of ivermectin causing half of the maximum inhibitory activity (IC50) on parasite survival was 0.81 μM with no significant difference between artemisinin-sensitive and artemisinin-resistant isolates (P = 0.574). The ivermectin metabolites were 2-fold to 4-fold less active than the ivermectin parent compound (P &lt; 0.001). Potential pharmacodynamic drug-drug interactions of ivermectin with artemisinins, ACT-partner drugs, and atovaquone were studied in vitro using mixture assays providing isobolograms and derived fractional inhibitory concentrations. There were no synergistic or antagonistic pharmacodynamic interactions when combining ivermectin and antimalarial drugs. In conclusion, ivermectin does not have clinically relevant activity against the asexual blood stages of P. falciparum. It also does not affect the in vitro antimalarial activity of artemisinins or ACT-partner drugs against asexual blood stages of P. falciparum.</p

    Establishment of the Ivermectin Research for Malaria Elimination Network: updating the research agenda

    Get PDF
    The potential use of ivermectin as an additional vector control tool is receiving increased attention from the malaria elimination community, driven by the increased importance of outdoor/residual malaria transmission and the threat of insecticide resistance where vector tools have been scaled-up. This report summarizes the emerging evidence presented at a side meeting on "Ivermectin for malaria elimination: current status and future directions" at the annual meeting of the American Society of Tropical Medicine and Hygiene in New Orleans on November 4, 2014. One outcome was the creation of the "Ivermectin Research for Malaria Elimination Network" whose main goal is to establish a common research agenda to generate the evidence base on whether ivermectin-based strategies should be added to the emerging arsenal to interrupt malaria transmission

    Ivermectin as a novel complementary malaria control tool to reduce incidence and prevalence: a modelling study.

    Get PDF
    BACKGROUND: Ivermectin is a potential new vector control tool to reduce malaria transmission. Mosquitoes feeding on a bloodmeal containing ivermectin have a reduced lifespan, meaning they are less likely to live long enough to complete sporogony and become infectious. We aimed to estimate the effect of ivermectin on malaria transmission in various scenarios of use. METHODS: We validated an existing population-level mathematical model of the effect of ivermectin mass drug administration (MDA) on the mosquito population and malaria transmission against two datasets: clinical data from a cluster- randomised trial done in Burkina Faso in 2015 wherein ivermectin was given to individuals taller than 90 cm and entomological data from a study of mosquito outcomes after ivermectin MDA for onchocerciasis or lymphatic filariasis in Burkina Faso, Senegal, and Liberia between 2008 and 2013. We extended the existing model to include a range of complementary malaria interventions (seasonal malaria chemoprevention and MDA with dihydroartemisinin-piperaquine) and to incorporate new data on higher doses of ivermectin with a longer mosquitocidal effect. We consider two ivermectin regimens: a single dose of 400 μg/kg (1 × 400 μg/kg) and three consecutive daily doses of 300 μg/kg per day (3 × 300 μg/kg). We simulated the effect of these two doses in a range of usage scenarios in different transmission settings (highly seasonal, seasonal, and perennial). We report percentage reductions in clinical incidence and slide prevalence. FINDINGS: We estimate that MDA with ivermectin will reduce prevalence and incidence and is most effective in areas with highly seasonal transmission. In a highly seasonal moderate transmission setting, three rounds of ivermectin only MDA at 3 × 300 μg/kg (rounds spaced 1 month apart) and 70% coverage is predicted to reduce clinical incidence by 71% and prevalence by 34%. We predict that adding ivermectin MDA to seasonal malaria chemoprevention in this setting would reduce clinical incidence by an additional 77% in children younger than 5 years compared with seasonal malaria chemoprevention alone; adding ivermectin MDA to MDA with dihydroartemisinin-piperaquine in this setting would reduce incidence by an additional 75% and prevalence by an additional 64% (all ages) compared with MDA with dihydroartemisinin-piperaquine alone. INTERPRETATION: Our modelling predictions suggest that ivermectin could be a valuable addition to the malaria control toolbox, both in areas with persistently high transmission where existing interventions are insufficient and in areas approaching elimination to prevent resurgence. FUNDING: Imperial College Junior Research Fellowship

    A systematic review and an individual patient data meta-analysis of ivermectin use in children weighing less than fifteen kilograms: Is it time to reconsider the current contraindication?

    Get PDF
    BACKGROUND: Oral ivermectin is a safe broad spectrum anthelminthic used for treating several neglected tropical diseases (NTDs). Currently, ivermectin use is contraindicated in children weighing less than 15 kg, restricting access to this drug for the treatment of NTDs. Here we provide an updated systematic review of the literature and we conducted an individual-level patient data (IPD) meta-analysis describing the safety of ivermectin in children weighing less than 15 kg. METHODOLOGY/PRINCIPAL FINDINGS: A systematic review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) for IPD guidelines by searching MEDLINE via PubMed, Web of Science, Ovid Embase, LILACS, Cochrane Database of Systematic Reviews, TOXLINE for all clinical trials, case series, case reports, and database entries for reports on the use of ivermectin in children weighing less than 15 kg that were published between 1 January 1980 to 25 October 2019. The protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO): CRD42017056515. A total of 3,730 publications were identified, 97 were selected for potential inclusion, but only 17 sources describing 15 studies met the minimum criteria which consisted of known weights of children less than 15 kg linked to possible adverse events, and provided comprehensive IPD. A total of 1,088 children weighing less than 15 kg were administered oral ivermectin for one of the following indications: scabies, mass drug administration for scabies control, crusted scabies, cutaneous larva migrans, myiasis, pthiriasis, strongyloidiasis, trichuriasis, and parasitic disease of unknown origin. Overall a total of 1.4% (15/1,088) of children experienced 18 adverse events all of which were mild and self-limiting. No serious adverse events were reported. CONCLUSIONS/SIGNIFICANCE: Existing limited data suggest that oral ivermectin in children weighing less than 15 kilograms is safe. Data from well-designed clinical trials are needed to provide further assurance

    Ivermectin inhibits the sporogony of <it>Plasmodium falciparum</it> in <it>Anopheles gambiae</it>

    No full text
    Abstract Background When ingested in a blood meal, ivermectin has been shown to reduce the survivorship of Anopheles gambiae in the laboratory and field. Furthermore, ivermectin mass drug administrations in Senegal have been shown to reduce the proportion of Plasmodium falciparum-sporozoite-containing An. gambiae. This study addresses whether ivermectin inhibits sporogony of P. falciparum in An. gambiae. Methods Anophele gambiae s.s. G3 strain were fed two concentrations of ivermectin (LC25 and LC5) along with P. falciparum NF54 in human blood meals at staggered intervals. Mosquitoes ingested ivermectin concurrent with parasites (DPI 0), or at three (DPI 3), six (DPI 6), and nine (DPI 9) days post parasite ingestion, or three days prior (DPI −3) to parasite ingestion. Mosquitoes were dissected at seven, twelve or fourteen days post parasite ingestion and either oocyst or sporozoite prevalence was recorded. To determine if P. falciparum sporozoite-containing An. gambiae were more susceptible to ivermectin than uninfected controls, survivorship was recorded for mosquitoes which ingested P. falciparum or control blood meal on DPI 0 and then a second blood meal containing ivermectin (LC25) on DPI 14. Results Ivermectin (LC25) co-ingested (DPI 0) with parasites reduced the proportion of An. gambiae that developed oocysts (χ2 = 15.4842, P = 0.0002) and sporozoites (χ2 = 19.9643, P 25) ingested DPI 6 (χ2 = 8.5103, P = 0.0044) and 9 (χ2 = 14.7998, P An. gambiae that developed sporozoites but not when ingested DPI 3 (χ2 = 0.0113, P = 1). Ivermectin (LC5) co-ingested (DPI 0) with parasites did not reduce the proportion of An. gambiae that developed oocysts (χ2 = 4.2518, P = 0.0577) or sporozoites (χ2 = 2.3636, P = 0.1540), however, when ingested DPI −3 the proportion of An. gambiae that developed sporozoites was reduced (χ2 = 8.4806, P = 0.0047). Plasmodium falciparum infection significantly reduced the survivorship of An. gambiae that ingested ivermectin (LC25) on DPI 14 compared to control mosquitoes that ingested a primary blood meal without parasites (χ2 = 4.97, P = 0.0257). Conclusions Ivermectin at sub-lethal concentrations inhibits the sporogony of P. falciparum in An. gambiae. These findings support the utility of ivermectin for P. falciparum transmission control.</p

    Perspective Piece: Rationale for the Coadministration of Albendazole and Ivermectin to Humans for Malaria Parasite Transmission Control

    No full text
    Recently there have been calls for the eradication of malaria and the elimination of soil-transmitted helminths (STHs). Malaria and STHs overlap in distribution, and STH infections are associated with increased risk for malaria. Indeed, there is evidenc
    corecore