12 research outputs found

    Glutathione S-transferase mu 1 (GSTM1) and theta 1 (GSTT1) genetic polymorphisms and atopic asthma in children from Southeastern Brazil

    Get PDF
    Xenobiotics can trigger degranulation of eosinophils and mast cells. In this process, the cells release several substances leading to bronchial hyperactivity, the main feature of atopic asthma (AA). GSTM1 and GSTT1 genes encode enzymes involved in the inactivation of these compounds. Both genes are polymorphic in humans and have a null variant genotype in which both the gene and corresponding enzyme are absent. An increased risk for disease in individuals with the null GST genotypes is therefore, but this issue is controversial. The aim of this study was to investigate the influence of the GSTM1 and GSTT1 genotypes on the occurrence of AA, as well as on its clinical manifestations. Genomic DNA from 86 patients and 258 controls was analyzed by polymerase chain reaction. The frequency of the GSTM1 null genotype in patients was higher than that found in controls (60.5% versus 40.3%, p = 0.002). In individuals with the GSTM1 null genotype the risk of manifested AA was 2.3-fold higher (95%CI: 1.4-3.7) than for others. In contrast, similar frequencies of GSTT1 null and combined GSTM1 plus GSTT1 null genotypes were seen in both groups. No differences in genotype frequencies were perceived in patients stratified by age, gender, ethnic origin, and severity of the disease. These results suggest that the inherited absence of the GSTM1 metabolic pathway may alter the risk of AA in southeastern Brazilian children, although this must be confirmed by further studies with a larger cohort of patients and age-matched controls from the distinct regions of the country

    Biochemical warfare on the reef : the role of glutathione transferases in consumer tolerance of dietary prostaglandins

    Get PDF
    © 2010 The Authors. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 5 (2010): e8537, doi:10.1371/journal.pone.0008537.Despite the profound variation among marine consumers in tolerance for allelochemically-rich foods, few studies have examined the biochemical adaptations underlying diet choice. Here we examine the role of glutathione S-transferases (GSTs) in the detoxification of dietary allelochemicals in the digestive gland of the predatory gastropod Cyphoma gibbosum, a generalist consumer of gorgonian corals. Controlled laboratory feeding experiments were used to investigate the influence of gorgonian diet on Cyphoma GST activity and isoform expression. Gorgonian extracts and semi-purified fractions were also screened to identify inhibitors and possible substrates of Cyphoma GSTs. In addition, we investigated the inhibitory properties of prostaglandins (PGs) structurally similar to antipredatory PGs found in high concentrations in the Caribbean gorgonian Plexaura homomalla. Cyphoma GST subunit composition was invariant and activity was constitutively high regardless of gorgonian diet. Bioassay-guided fractionation of gorgonian extracts revealed that moderately hydrophobic fractions from all eight gorgonian species examined contained putative GST substrates/inhibitors. LC-MS and NMR spectral analysis of the most inhibitory fraction from P. homomalla subsequently identified prostaglandin A2 (PGA2) as the dominant component. A similar screening of commercially available prostaglandins in series A, E, and F revealed that those prostaglandins most abundant in gorgonian tissues (e.g., PGA2) were also the most potent inhibitors. In vivo estimates of PGA2 concentration in digestive gland tissues calculated from snail grazing rates revealed that Cyphoma GSTs would be saturated with respect to PGA2 and operating at or near physiological capacity. The high, constitutive activity of Cyphoma GSTs is likely necessitated by the ubiquitous presence of GST substrates and/or inhibitors in this consumer's gorgonian diet. This generalist's GSTs may operate as ‘all-purpose’ detoxification enzymes, capable of conjugating or sequestering a broad range of lipophilic gorgonian compounds, thereby allowing this predator to exploit a range of chemically-defended prey, resulting in a competitive dietary advantage for this species.Financial support for this work was provided by the Ocean Life Institute Tropical Research Initiative Grant (WHOI) to KEW and MEH; the Robert H. Cole Endowed Ocean Ventures Fund (WHOI) to KEW; the National Undersea Research Center - Program Development Proposal (CMRC-03PRMN0103A) to KEW; Walter A. and Hope Noyes Smith, and a National Science Foundation Graduate Research Fellowship to KEW

    The miR-30 microRNA family targets smoothened to regulate hedgehog signalling in zebrafish early muscle development

    Get PDF
    The importance of microRNAs in development is now widely accepted. However, identifying the specific targets of individual microRNAs and understanding their biological significance remains a major challenge. We have used the zebrafish model system to evaluate the expression and function of microRNAs potentially involved in muscle development and study their interaction with predicted target genes. We altered expression of the miR-30 microRNA family and generated phenotypes that mimicked misregulation of the Hedgehog pathway. Inhibition of the miR-30 family increases activity of the pathway, resulting in elevated ptc1 expression and increased numbers of superficial slow-muscle fibres. We show that the transmembrane receptor smoothened is a target of this microRNA family. Our results indicate that fine coordination of smoothened activity by the miR-30 family allows the correct specification and differentiation of distinct muscle cell types during zebrafish embryonic development
    corecore