53 research outputs found

    Translating clinicians' beliefs into implementation interventions (TRACII) : a protocol for an intervention modeling experiment to change clinicians' intentions to implement evidence-based practice

    Get PDF
    Background: Biomedical research constantly produces new findings, but these are not routinely incorporated into health care practice. Currently, a range of interventions to promote the uptake of emerging evidence are available. While their effectiveness has been tested in pragmatic trials, these do not form a basis from which to generalise to routine care settings. Implementation research is the scientific study of methods to promote the uptake of research findings, and hence to reduce inappropriate care. As clinical practice is a form of human behaviour, theories of human behaviour that have proved to be useful in other settings offer a basis for developing a scientific rationale for the choice of interventions. Aims: The aims of this protocol are 1) to develop interventions to change beliefs that have already been identified as antecedents to antibiotic prescribing for sore throats, and 2) to experimentally evaluate these interventions to identify those that have the largest impact on behavioural intention and behavioural simulation. Design: The clinical focus for this work will be the management of uncomplicated sore throat in general practice. Symptoms of upper respiratory tract infections are common presenting features in primary care. They are frequently treated with antibiotics, and research evidence is clear that antibiotic treatment offers little or no benefit to otherwise healthy adult patients. Reducing antibiotic prescribing in the community by the "prudent" use of antibiotics is seen as one way to slow the rise in antibiotic resistance, and appears safe, at least in children. However, our understanding of how to do this is limited. Participants will be general medical practitioners. Two theory-based interventions will be designed to address the discriminant beliefs in the prescribing of antibiotics for sore throat, using empirically derived resources. The interventions will be evaluated in a 2 × 2 factorial randomised controlled trial delivered in a postal questionnaire survey. Two outcome measures will be assessed: behavioural intention and behavioural simulation.This study is funded by the European Commission Research Directorate as part of a multi-partner program: Research Based Education and Quality Improvement (ReBEQI): A Framework and tools to develop effective quality improvement programs in European healthcare. (Proposal No: QLRT-2001-00657)

    The Prevalence of Campylobacter amongst a Free-Range Broiler Breeder Flock Was Primarily Affected by Flock Age

    Get PDF
    Campylobacter successfully colonizes broiler chickens, but little is known about the longer term natural history of colonization, since most flocks are slaughtered at an immature age. In this study, the prevalence and genetic diversity of Campylobacter colonizing a single free-range broiler breeder flock was investigated over the course of a year. The age of the flock was the most important factor in determining both the prevalence and diversity of Campylobacter over time. There was no correlation with season, temperature, the amount of rain and sunshine, or the dynamics of colonization amongst geographically and temporally matched broiler flocks. The higher prevalence rates coincided with the age at which broiler chickens are typically slaughtered, but then in the absence of bio-security or other intervention methods, and despite changes in flock management, the prevalence fell to significantly lower levels for the remainder of the study. The genetic diversity of Campylobacter increased as the flock aged, implying that genotypes were accumulated within the flock and may persist for a long time. A better understanding of the ecology of Campylobacter within commercial chicken flocks will allow the design of more effective farm-based interventions

    The Pathogenic Potential of Campylobacter concisus Strains Associated with Chronic Intestinal Diseases

    Get PDF
    Campylobacter concisus has garnered increasing attention due to its association with intestinal disease, thus, the pathogenic potential of strains isolated from different intestinal diseases was investigated. A method to isolate C. concisus was developed and the ability of eight strains from chronic and acute intestinal diseases to adhere to and invade intestinal epithelial cells was determined. Features associated with bacterial invasion were investigated using comparative genomic analyses and the effect of C. concisus on host protein expression was examined using proteomics. Our isolation method from intestinal biopsies resulted in the isolation of three C. concisus strains from children with Crohn's disease or chronic gastroenteritis. Four C. concisus strains from patients with chronic intestinal diseases can attach to and invade host cells using mechanisms such as chemoattraction to mucin, aggregation, flagellum-mediated attachment, “membrane ruffling”, cell penetration and damage. C. concisus strains isolated from patients with chronic intestinal diseases have significantly higher invasive potential than those from acute intestinal diseases. Investigation of the cause of this increased pathogenic potential revealed a plasmid to be responsible. 78 and 47 proteins were upregulated and downregulated in cells infected with C. concisus, respectively. Functional analysis of these proteins showed that C. concisus infection regulated processes related to interleukin-12 production, proteasome activation and NF-κB activation. Infection with all eight C. concisus strains resulted in host cells producing high levels of interleukin-12, however, only strains capable of invading host cells resulted in interferon-γ production as confirmed by ELISA. These findings considerably support the emergence of C. concisus as an intestinal pathogen, but more significantly, provide novel insights into the host immune response and an explanation for the heterogeneity observed in the outcome of C. concisus infection. Moreover, response to infection with invasive strains has substantial similarities to that observed in the inflamed mucosa of Crohn's disease patients

    Novel Murine Infection Models Provide Deep Insights into the “Ménage à Trois” of Campylobacter jejuni, Microbiota and Host Innate Immunity

    Get PDF
    BACKGROUND: Although Campylobacter jejuni-infections have a high prevalence worldwide and represent a significant socioeconomic burden, it is still not well understood how C. jejuni causes intestinal inflammation. Detailed investigation of C. jejuni-mediated intestinal immunopathology is hampered by the lack of appropriate vertebrate models. In particular, mice display colonization resistance against this pathogen. METHODOLOGY/PRINCIPAL FINDINGS: To overcome these limitations we developed a novel C. jejuni-infection model using gnotobiotic mice in which the intestinal flora was eradicated by antibiotic treatment. These animals could then be permanently associated with a complete human (hfa) or murine (mfa) microbiota. After peroral infection C. jejuni colonized the gastrointestinal tract of gnotobiotic and hfa mice for six weeks, whereas mfa mice cleared the pathogen within two days. Strikingly, stable C. jejuni colonization was accompanied by a pro-inflammatory immune response indicated by increased numbers of T- and B-lymphocytes, regulatory T-cells, neutrophils and apoptotic cells, as well as increased concentrations of TNF-α, IL-6, and MCP-1 in the colon mucosa of hfa mice. Analysis of MyD88(-/-), TRIF(-/-), TLR4(-/-), and TLR9(-/-) mice revealed that TLR4- and TLR9-signaling was essential for immunopathology following C. jejuni-infection. Interestingly, C. jejuni-mutant strains deficient in formic acid metabolism and perception induced less intestinal immunopathology compared to the parental strain infection. In summary, the murine gut flora is essential for colonization resistance against C. jejuni and can be overcome by reconstitution of gnotobiotic mice with human flora. Detection of C. jejuni-LPS and -CpG-DNA by host TLR4 and TLR9, respectively, plays a key role in immunopathology. Finally, the host immune response is tightly coupled to bacterial formic acid metabolism and invasion fitness. CONCLUSION/SIGNIFICANCE: We conclude that gnotobiotic and "humanized" mice represent excellent novel C. jejuni-infection and -inflammation models and provide deep insights into the immunological and molecular interplays between C. jejuni, microbiota and innate immunity in human campylobacteriosis

    Intestinal Microbiota Shifts towards Elevated Commensal Escherichia coli Loads Abrogate Colonization Resistance against Campylobacter jejuni in Mice

    Get PDF
    Background: The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition. Methodology/Principal Findings: Since the microbiota composition changes significantly during intestinal inflammation we dissected factors contributing to colonization resistance against C. jejuni in murine ileitis, colitis and in infant mice. In contrast to healthy animals C. jejuni could stably colonize mice suffering from intestinal inflammation. Strikingly, in mice with Toxoplasma gondii-induced acute ileitis, C. jejuni disseminated to mesenteric lymphnodes, spleen, liver, kidney, and blood. In infant mice C. jejuni infection induced enterocolitis. Mice suffering from intestinal inflammation and C. jejuni susceptible infant mice displayed characteristical microbiota shifts dominated by increased numbers of commensal Escherichia coli. To further dissect the pivotal role of those distinct microbiota shifts in abrogating colonization resistance, we investigated C. jejuni infection in healthy adult mice in which the microbiota was artificially modified by feeding live commensal E. coli. Strikingly, in animals harboring supra-physiological intestinal E. coli loads, colonization resistance was significantly diminished and C. jejuni infection induced enterocolitis mimicking key features of human campylobacteriosis. Conclusion/Significance: Murine colonization resistance against C. jejuni is abrogated by changes in the microbiot

    Genotyping and antibiotic resistance of thermophilic Campylobacter isolated from chicken and pig meat in Vietnam

    Get PDF
    Background Campylobacter species are recognized as the most common cause of foodborne bacterial gastroenteritis in humans. In this study nine Campylobacter strains isolated from chicken meat and pork in Hanoi, Vietnam, were characterized using molecular methods and tested for antibiotic resistance. Results The nine isolates (eight C. jejuni and one C. coli) were identified by multiplex PCR, and tested for the presence or absence of 29 gene loci associated with virulence, lipooligosaccharide (LOS) biosynthesis and further functions. flaA typing, multilocus sequence typing and microarray assay investigation showed a high degree of genetic diversity among these isolates. In all isolates motility genes (flaA, flaB, flhA, fliM), colonization associated genes (cadF, docB), toxin production genes (cdtA, cdtB, secD, secF), and the LOS biosynthesis gene pglB were detected. Eight gene loci (fliY, virB11, Cje1278, Cj1434c, Cj1138, Cj1438c, Cj1440c, Cj1136) could not be detected by PCR. A differing presence of the gene loci ciaB (22.2 %), Cje1280 (77.8 %), docC (66.7 %), and cgtB (55.6 %) was found. iamA, cdtC, and the type 6 secretion system were present in all C. jejuni isolates but not in C. coli. flaA typing resulted in five different genotypes within C. jejuni, MLST classified the isolates into seven sequence types (ST-5155, ST-6736, ST-2837, ST-4395, ST-5799, ST-4099 and ST-860). The microarray assay analysis showed a high genetic diversity within Vietnamese Campylobacter isolates which resulted in eight different types for C. jejuni. Antibiotic susceptibility profiles showed that all isolates were sensitive to gentamicin and most isolates (88.8 %) were sensitive to chloramphenicol, erythromycin and streptomycin. Resistance rates to nalidixic acid, tetracycline and ciprofloxacin were 88.9, 77.8 and 66.7 %, respectively. Conclusions To the best of our knowledge, this study is the first report that shows high genetic diversity and remarkable antibiotic resistance of Campylobacter strains isolated from meat in Vietnam which can be considered of high public health significance. These preliminary data show that large scale screenings are justified to assess the relevance of Campylobacter infections on human health in Vietnam

    Biochemical warfare on the reef : the role of glutathione transferases in consumer tolerance of dietary prostaglandins

    Get PDF
    © 2010 The Authors. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 5 (2010): e8537, doi:10.1371/journal.pone.0008537.Despite the profound variation among marine consumers in tolerance for allelochemically-rich foods, few studies have examined the biochemical adaptations underlying diet choice. Here we examine the role of glutathione S-transferases (GSTs) in the detoxification of dietary allelochemicals in the digestive gland of the predatory gastropod Cyphoma gibbosum, a generalist consumer of gorgonian corals. Controlled laboratory feeding experiments were used to investigate the influence of gorgonian diet on Cyphoma GST activity and isoform expression. Gorgonian extracts and semi-purified fractions were also screened to identify inhibitors and possible substrates of Cyphoma GSTs. In addition, we investigated the inhibitory properties of prostaglandins (PGs) structurally similar to antipredatory PGs found in high concentrations in the Caribbean gorgonian Plexaura homomalla. Cyphoma GST subunit composition was invariant and activity was constitutively high regardless of gorgonian diet. Bioassay-guided fractionation of gorgonian extracts revealed that moderately hydrophobic fractions from all eight gorgonian species examined contained putative GST substrates/inhibitors. LC-MS and NMR spectral analysis of the most inhibitory fraction from P. homomalla subsequently identified prostaglandin A2 (PGA2) as the dominant component. A similar screening of commercially available prostaglandins in series A, E, and F revealed that those prostaglandins most abundant in gorgonian tissues (e.g., PGA2) were also the most potent inhibitors. In vivo estimates of PGA2 concentration in digestive gland tissues calculated from snail grazing rates revealed that Cyphoma GSTs would be saturated with respect to PGA2 and operating at or near physiological capacity. The high, constitutive activity of Cyphoma GSTs is likely necessitated by the ubiquitous presence of GST substrates and/or inhibitors in this consumer's gorgonian diet. This generalist's GSTs may operate as ‘all-purpose’ detoxification enzymes, capable of conjugating or sequestering a broad range of lipophilic gorgonian compounds, thereby allowing this predator to exploit a range of chemically-defended prey, resulting in a competitive dietary advantage for this species.Financial support for this work was provided by the Ocean Life Institute Tropical Research Initiative Grant (WHOI) to KEW and MEH; the Robert H. Cole Endowed Ocean Ventures Fund (WHOI) to KEW; the National Undersea Research Center - Program Development Proposal (CMRC-03PRMN0103A) to KEW; Walter A. and Hope Noyes Smith, and a National Science Foundation Graduate Research Fellowship to KEW

    Immunogenicity and efficacy of oral vaccines in developing countries: lessons from a live cholera vaccine

    Get PDF
    Oral vaccines, whether living or non-living, viral or bacterial, elicit diminished immune responses or have lower efficacy in developing countries than in developed countries. Here I describe studies with a live oral cholera vaccine that include older children no longer deriving immune support from breast milk or maternal antibodies and that identify some of the factors accounting for the lower immunogenicity, as well as suggesting counter-measures that may enhance the effectiveness of oral immunization in developing countries. The fundamental breakthrough is likely to require reversing effects of the 'environmental enteropathy' that is often present in children living in fecally contaminated, impoverished environments

    Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing.

    Get PDF
    Congenital heart defects (CHDs) have a neonatal incidence of 0.8-1% (refs. 1,2). Despite abundant examples of monogenic CHD in humans and mice, CHD has a low absolute sibling recurrence risk (∼2.7%), suggesting a considerable role for de novo mutations (DNMs) and/or incomplete penetrance. De novo protein-truncating variants (PTVs) have been shown to be enriched among the 10% of 'syndromic' patients with extra-cardiac manifestations. We exome sequenced 1,891 probands, including both syndromic CHD (S-CHD, n = 610) and nonsyndromic CHD (NS-CHD, n = 1,281). In S-CHD, we confirmed a significant enrichment of de novo PTVs but not inherited PTVs in known CHD-associated genes, consistent with recent findings. Conversely, in NS-CHD we observed significant enrichment of PTVs inherited from unaffected parents in CHD-associated genes. We identified three genome-wide significant S-CHD disorders caused by DNMs in CHD4, CDK13 and PRKD1. Our study finds evidence for distinct genetic architectures underlying the low sibling recurrence risk in S-CHD and NS-CHD
    corecore