892 research outputs found

    Analysis and improvement of the vector quantization in SELP (Stochastically Excited Linear Prediction)

    Get PDF
    The Stochastically Excited Linear Prediction (SELP) algorithm is described as a speech coding method employing a two-stage vector quantization. The first stage uses an adaptive codebook which efficiently encodes the periodicity of voiced speech, and the second stage uses a stochastic codebook to encode the remainder of the excitation signal. The adaptive codebook performs well when the pitch period of the speech signal is larger than the frame size. An extension is introduced, which increases its performance for the case that the frame size is longer than the pitch period. The performance of the stochastic stage, which improves with frame length, is shown to be best in those sections of the speech signal where a high level of short-term correlations is present. It can be concluded that the SELP algorithm performs best during voiced speech where the pitch period is longer than the frame length

    Proton Motive Force-Dependent Hoechst 33342 Transport by the ABC Transporter LmrA of Lactococcus lactis

    Get PDF
    The fluorescent compound Hoechst 33342 is a substrate for many multidrug resistance (MDR) transporters and is widely used to characterize their transport activity. We have constructed mutants of the adenosine triphosphate (ATP) binding cassette (ABC)-type MDR transporter LmrA of Lactococcus lactis that are defective in ATP hydrolysis. These mutants and wild-type LmrA exhibited an atypical behavior in the Hoechst 33342 transport assay. In membrane vesicles, Hoechst 33342 transport was shown to be independent of the ATPase activity of LmrA, and it was not inhibited by orthovanadate but sensitive to uncouplers that collapse the proton gradient and to N,N'-dicyclohexylcarbodiimide, an inhibitor of the F0F1-ATPase. In contrast, transport of Hoechst 33342 by the homologous, heterodimeric MDR transporter LmrCD showed a normal ATP dependence and was insensitive to uncouplers of the proton gradient. With intact cells, expression of LmrA resulted in an increased rate of Hoechst 33342 influx while LmrCD caused a decrease in the rate of Hoechst 33342 influx. Cellular toxicity assays using a triple knockout strain, i.e., L. lactis ΔlmrA ΔlmrCD, demonstrate that expression of LmrCD protects cells against the growth inhibitory effects of Hoechst 33342, while in the presence of LmrA, cells are more susceptible to Hoechst 33342. Our data demonstrate that the LmrA-mediated Hoechst 33342 transport in membrane vesicles is influenced by the transmembrane pH gradient due to a pH-dependent partitioning of Hoechst 33342 into the membrane.

    Prevalence of suicidal behaviour following traumatic brain injury: Longitudinal follow-up data from the NIDRR Traumatic Brain Injury Model Systems

    Get PDF
    Objective: This study utilized the Traumatic Brain Injury Model Systems (TBIMS) National Database to examine the prevalence of depression and suicidal behaviour in a large cohort of patients who sustained moderate-to-severe TBI. Method: Participants presented to a TBIMS acute care hospital within 72 hours of injury and received acute care and comprehensive rehabilitation in a TBIMS designated brain injury inpatient rehabilitation programme. Depression and suicidal ideation were measured with the Patient Health Questionnaire (PHQ-9). Self-reported suicide attempts during the past year were recorded at each follow-up examination, at 1, 2, 3, 10, 15 and 20 years post-injury. Results: Throughout the 20 years of follow-up, rates of depression ranged from 24.8–28.1%, suicidal ideation ranged from 7.0–10.1% and suicide attempts (past year) ranged from 0.8–1.7%. Participants who endorsed depression and/or suicidal behaviour at year 1 demonstrated consistently elevated rates of depression and suicidal behaviour 5 years after TBI. Conclusion: Compared to the general population, individuals with TBI are at greater risk for depression and suicidal behaviour many years after TBI. The significant psychiatric symptoms evidenced by individuals with TBI highlight the need for routine screening and mental health treatment in this population

    The Optical Alignment System of the ATLAS Muon Spectrometer Endcaps

    Get PDF
    The muon spectrometer of the ATLAS detector at the Large Hadron Collider (LHC) at CERN consists of over a thousand muon precision chambers, arranged in three concentrical cylinders in the barrel region, and in four wheels in each of the two endcaps. The endcap wheels are located between 7m and 22m from the interaction point, and have diameters between 13m and 24m. Muon chambers are equipped with a complex on-line optical alignment system to monitor their positions and deformations during ATLAS data-taking. We describe the layout of the endcap part of the alignment system and the design and calibration of the optical sensors, as well as the various software components. About 1% of the system has been subjected to performance tests in the H8 beam line at CERN, and results of these tests are discussed. The installation and commissioning of the full system in the ATLAS cavern is well underway, and results from approximately half of the system indicate that we will reach the ambitious goal of a 40mu alignment accuracy, required for reconstructing final-state muons at the highest expected energies

    Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber

    Full text link
    We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level

    Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering

    Full text link
    We discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Using simulation, we have shown that the standard Highland formula should be re-tuned specifically for scattering in liquid argon, which significantly improves the bias and resolution of the momentum measurement. With the tuned formula, we find agreement between data and simulation for contained tracks, with a small bias in the momentum reconstruction and with resolutions that vary as a function of track length, improving from about 10% for the shortest (one meter long) tracks to 5% for longer (several meter) tracks. For simulated exiting muons with at least one meter of track contained, we find a similarly small bias, and a resolution which is less than 15% for muons with momentum below 2 GeV/c. Above 2 GeV/c, results are given as a first estimate of the MCS momentum measurement capabilities of MicroBooNE for high momentum exiting tracks

    A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

    Get PDF
    A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible reconfiguration of the BNB target and horn system to improve its performance for oscillation searches.Comment: 209 pages, 129 figure

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870
    • …
    corecore