128 research outputs found

    Translational science in chronic tendinopathies

    Get PDF
    Chronic tendinopathies involve majority of patients in clinical practice of orthopaedic surgeons and sports physicians. Translational medicine confers an emerging medical advance efficiently towards the clinician directly from scientists which may be used as a targeted therapy. The main objective of translational research from “bench to bedside” is to test novel inventions in humans. Our purpose in this article to understand the translational medicine approach for chronic tendinopathies in clinical aspects. Translational research in chronic tendinopathies is required certainly due to plenty of reasons. Newer advances and targeted approach to these tendon disorders may curtail the further degenerative process. It aids in earlier diagnosis and prevention of morbidity, early occupancy of occupational activity, lack of economical as well as recreational failure. Pre-disease level activity is ultimate goal of any therapy. Tendon pathophysiology is constantly evolving researched topic in both biochemical as well as molecular aspect. The basic fundamental understanding of complex process of tendon healing and regeneration is necessary for formulating a newer guideline. The cornerstone of treatment of tendinopathies is still non-operative management. Physical therapy, better pain control, NSAIDS are still primary choice for these conditions. Various biological therapy whenever used one should combined them with other appropriate options to obtain an optimum outcome

    Quark-lepton mass relation and CKM mixing in an A(4) extension of the minimal supersymmetric standard model

    Get PDF
    An interesting mass relation between down-type quarks and charged leptons has been recently predicted within a supersymmetric SU(3)(c) circle times SU(2)(L) circle times U(1)(Y) model based on the A(4) flavor symmetry. Here we propose a simple extension which provides an adequate full description of the quark sector. By adding a pair of vectorlike up quarks, we show how the CKM entries V-ub, V-cb, V-td and V-ts arise from deviations of the unitarity. We perform an analysis including the most relevant observables in the quark sector, such as oscillations and rare decays of kaons, B-d and B-s mesons. In the lepton sector, the model predicts an inverted hierarchy for the neutrino masses, leading to a potentially observable rate of neutrinoless double beta decay

    The genetic and biochemical basis of FANCD2 Monoubiquitination

    Get PDF
    Fanconi anaemia (FA) is a cancer predisposition syndrome characterized by cellular sensitivity to DNA interstrand crosslinkers. The molecular defect in FA is an impaired DNA repair pathway. The critical event in activating this pathway is monoubiquitination of FANCD2. In vivo, a multisubunit FA core complex catalyzes this step, but its mechanism is unclear. Here, we report purification of a native avian FA core complex and biochemical reconstitution of FANCD2 monoubiquitination. This demonstrates that the catalytic FANCL E3 ligase subunit must be embedded within the complex for maximal activity and site specificity. We genetically and biochemically define a minimal subcomplex comprising just three proteins (FANCB, FANCL, and FAAP100) that functions as the monoubiquitination module. Residual FANCD2 monoubiquitination activity is retained in cells defective for other FA core complex subunits. This work describes the in vitro reconstitution and characterization of this multisubunit monoubiquitin E3 ligase, providing key insight into the conserved FA DNA repair pathway

    Xpf suppresses the mutagenic consequences of phagocytosis in Dictyostelium

    Get PDF
    As time passes, mutations accumulate in the genomes of all living organisms. These changes promote genetic diversity, but also precipitate ageing and the initiation of cancer. Food is a common source of mutagens, but little is known about how nutritional factors cause lasting genetic changes in the consuming organism. Here, we describe an unusual genetic interaction between DNA repair in the unicellular amoeba Dictyostelium discoideum and its natural bacterial food source. We found that Dictyostelium deficient in the DNA repair nuclease Xpf (xpf−) display a severe and specific growth defect when feeding on bacteria. Despite being proficient in the phagocytosis and digestion of bacteria, over time, xpf− Dictyostelium feeding on bacteria cease to grow and in many instances die. The Xpf nuclease activity is required for sustained growth using a bacterial food source. Furthermore, the ingestion of this food source leads to a striking accumulation of mutations in the genome of xpf− Dictyostelium. This work therefore establishes Dictyostelium as a model genetic system to dissect nutritional genotoxicity, providing insight into how phagocytosis can induce mutagenesis and compromise survival fitness.Medical Research Council (MRC) de Reino Unido. MC_U105178811 y MC_U105115237Wellcome Trust de Reino Unido. WT10620

    Structure of the fanconi anaemia monoubiquitin ligase complex

    Get PDF
    The Fanconi anaemia (FA) pathway repairs DNA damage caused by endogenous and chemotherapy-induced DNA crosslinks, and responds to replication stress1,2. Genetic inactivation of this pathway by mutation of genes encoding FA complementation group (FANC) proteins impairs development, prevents blood production and promotes cancer1,3. The key molecular step in the FA pathway is the monoubiquitination of a pseudosymmetric heterodimer of FANCD2-FANCI4,5 by the FA core complex-a megadalton multiprotein E3 ubiquitin ligase6,7. Monoubiquitinated FANCD2 then recruits additional protein factors to remove the DNA crosslink or to stabilize the stalled replication fork. A molecular structure of the FA core complex would explain how it acts to maintain genome stability. Here we reconstituted an active, recombinant FA core complex, and used cryo-electron microscopy and mass spectrometry to determine its structure. The FA core complex comprises two central dimers of the FANCB and FA-associated protein of 100 kDa (FAAP100) subunits, flanked by two copies of the RING finger subunit, FANCL. These two heterotrimers act as a scaffold to assemble the remaining five subunits, resulting in an extended asymmetric structure. Destabilization of the scaffold would disrupt the entire complex, resulting in a non-functional FA pathway. Thus, the structure provides a mechanistic basis for the low numbers of patients with mutations in FANCB, FANCL and FAAP100. Despite a lack of sequence homology, FANCB and FAAP100 adopt similar structures. The two FANCL subunits are in different conformations at opposite ends of the complex, suggesting that each FANCL has a distinct role. This structural and functional asymmetry of dimeric RING finger domains may be a general feature of E3 ligases. The cryo-electron microscopy structure of the FA core complex provides a foundation for a detailed understanding of its E3 ubiquitin ligase activity and DNA interstrand crosslink repair
    corecore