119 research outputs found

    Strengthening mechanisms in thermomechanically processed NbTi-microalloyed steel

    Get PDF
    The effect of deformation temperature on microstructure and mechanical properties was investigated for thermomechanically processed NbTi-microalloyed steel with ferrite-pearlite microstructure. With a decrease in the finish deformation temperature at 1348 K to 1098 K (1075 °C to 825 °C) temperature range, the ambient temperature yield stress did not vary significantly, work hardening rate decreased, ultimate tensile strength decreased, and elongation to failure increased. These variations in mechanical properties were correlated to the variations in microstructural parameters (such as ferrite grain size, solid solution concentrations, precipitate number density and dislocation density). Calculations based on the measured microstructural parameters suggested the grain refinement, solid solution strengthening, precipitation strengthening, and work hardening contributed up to 32 pct, up to 48 pct, up to 25 pct, and less than 3 pct to the yield stress, respectively. With a decrease in the finish deformation temperature, both the grain size strengthening and solid solution strengthening increased, the precipitation strengthening decreased, and the work hardening contribution did not vary significantly

    Single-Polymer Composites (SPCs) : Status and Future Trends

    Get PDF
    Preparation, properties and applications of single-polymer composites (SPCs), representing an emerging family within the polymeric composite materials, have been surveyed. SPCs were classified in respect to their composition (one- and two-constituents), and preforms (non-consolidated and consolidated). SPCs composed of amorphous or semicrystalline matrices and semicrystalline reinforcements were considered. Methods to widen the temperature difference between the matrix- and reinforcement-giving materials of the same polymer (one-constituent) or same polymer type (two-constituent approach) have been introduced and discussed. Special attention was paid to the unsolved questions related to the interface/interphase in SPCs. It was emphasized that the development of SPCs is fuelled by the need of engineering parts in different applications which have low density and “ultimate” recyclability (i.e. reprocessing via remelting). Recent development of SPCs is supported by novel preform preparation, consolidation and production possibilities

    Shear Localization in Dynamic Deformation: Microstructural Evolution

    Full text link

    Molecular orientation of individual LCP particles in injection-moulded PPS/LCP blends

    No full text
    Polarized light microscopy was used to investigate the presence of preferred molecular orientation in the LCP phase of PPS/LCP blends after injection moulding. Normal birefringence effects appeared to be complicated by artifacts due to sample preparation and by the complex nature of polarized light transmission through a multicomponent sample. It was found, however, that, during low-temperature cutting of optically transparent thin sections on a standard microtome, individual LCP particles could be separated from the PPS matrix, and their birefringence analyzed separately. Preferred orientation was detected only in LCP fibrils which dominated in skin regions, but not in droplet-shaped particles which had formed in core regions. Quantitative measurements indicated that the molecular orientation of the fibrils increased linearly with their length-to-diameter aspect ratios which ranged from 15 to 50. Even for the highest aspect ratios, however, the degree of orientation was always less than that which could easily be introduced into pure LCP thin-film samples by manual shearing

    Transcrystallization at the interface of polyethylene single-polymer composites

    Get PDF
    The phenomenon of transcrystallization was studied at the interface of UHMWPE fibers embedded in an HDPE matrix. It was hoped that epitaxial crystallization in such model composites could eventually be used to improve adhesion between these high-strength fibers and the thermoplastic matrix material. Matrix crystallization was induced and accompanied on a specially designed hot stage which made the crystallization front advance slowly along a thermal gradient. Transcrystalline interfacial layers were observed without regard to temperature conditions, but with widely varying dimensions. Lamellar resolution within these layers was achieved by low voltage scanning electron microscopy, and the very beginning of transcrystallization was observed in sample areas where UHMWPE fiber segments were only partially embedded into the HDPE matrix. Lamellar alignment on the fiber surface indicated that transcrystallization in this system was associated with epitaxial nucleation
    corecore