3 research outputs found

    Generation of a Non-Transgenic Genetically Improved Yeast Strain for Wine Production from Nitrogen-Deficient Musts

    Get PDF
    The yeast Saccharomyces cerevisiae is the main species responsible for the process that involves the transformation of grape must into wine, with the initial nitrogen in the grape must being vital for it. One of the main problems in the wine industry is the deficiency of nitrogen sources in the grape must, leading to stuck or sluggish fermentations, and generating economic losses. In this scenario, an alternative is the isolation or generation of yeast strains with low nitrogen requirements for fermentation. In the present study, we carry out a genetic improvement program using as a base population a group of 70 strains isolated from winemaking environments mainly in Chile and Argentina (F0), making from it a first and second filial generation (F1 and F2, respectively) based in different families and hybrids. It was found that the trait under study has a high heritability, obtaining in the F2 population strains that consume a minor proportion of the nitrogen sources present in the must. Among these improved strains, strain “686” specially showed a marked drop in the nitrogen consumption, without losing fermentative performance, in synthetic grape must at laboratory level. When using this improved strain to produce wine from a natural grape must (supplemented and non-supplemented with ammonium) at pilot scale under wine cellar conditions, a similar fermentative capacity was obtained between this strain and a widely used commercial strain (EC1118). However, when fermented in a non-supplemented must, improved strain “686” showed the presence of a marked floral aroma absent for EC1118 strain, this difference being probably a direct consequence of its different pattern in amino acid consumption. The combination of the capacity of improved strain “686” to ferment without nitrogen addition and produce floral aromas may be of commercial interest for the wine industry.Fil: Kessi Pérez, Eduardo. Universidad de Santiago de Chile; ChileFil: Molinet, Jennifer. Universidad de Santiago de Chile; ChileFil: García, Verónica. Universidad de Santiago de Chile; ChileFil: Aguilera, Omayra. Universidad de Santiago de Chile; ChileFil: Cepeda, Fernanda. Universidad de Chile; ChileFil: López, María. Universidad de Chile; ChileFil: Sari, Santiago. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-San Juan. Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Cuello, Raúl Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-San Juan. Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Ciklic, Iván Francisco. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-San Juan. Estación Experimental Agropecuaria Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Rojo, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-San Juan. Estación Experimental Agropecuaria Mendoza. Centro de Estudios Enológicos; ArgentinaFil: Combina, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-San Juan. Estación Experimental Agropecuaria Mendoza. Centro de Estudios Enológicos; ArgentinaFil: Araneda, Cristián. Universidad de Chile; ChileFil: Martínez, Claudio. Universidad de Santiago de Chile; Chil

    Comparison of Phylogenetic Tree Topologies for Nitrogen Associated Genes Partially Reconstruct the Evolutionary History of Saccharomyces cerevisiae

    No full text
    Massive sequencing projects executed in Saccharomyces cerevisiae have revealed in detail its population structure. The recent “1002 yeast genomes project” has become the most complete catalogue of yeast genetic diversity and a powerful resource to analyse the evolutionary history of genes affecting specific phenotypes. In this work, we selected 22 nitrogen associated genes and analysed the sequence information from the 1011 strains of the “1002 yeast genomes project”. We constructed a total evidence (TE) phylogenetic tree using concatenated information, which showed a 27% topology similarity with the reference (REF) tree of the “1002 yeast genomes project”. We also generated individual phylogenetic trees for each gene and compared their topologies, identifying genes with similar topologies (suggesting a shared evolutionary history). Furthermore, we pruned the constructed phylogenetic trees to compare the REF tree topology versus the TE tree and the individual genes trees, considering each phylogenetic cluster/subcluster within the population, observing genes with cluster/subcluster topologies of high similarity to the REF tree. Finally, we used the pruned versions of the phylogenetic trees to compare four strains considered as representatives of S. cerevisiae clean lineages, observing for 15 genes that its cluster topologies match 100% the REF tree, supporting that these strains represent main lineages of yeast population. Altogether, our results showed the potential of tree topologies comparison for exploring the evolutionary history of a specific group of genes

    KAE1 Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in Saccharomyces cerevisiae

    Get PDF
    The eukaryotic domain-conserved TORC1 signalling pathway connects growth with nutrient sufficiency, promoting anabolic processes such as ribosomal biogenesis and protein synthesis. In Saccharomyces cerevisiae, TORC1 is activated mainly by the nitrogen sources. Recently, this pathway has gotten renewed attention but now in the context of the alcoholic fermentation, due to its key role in nitrogen metabolism regulation. Although the distal and proximal effectors downstream TORC1 are well characterised in yeast, the mechanism by which TORC1 is activated by nitrogen sources is not fully understood. In this work, we took advantage of a previously developed microculture-based methodology, which indirectly evaluates TORC1 activation in a nitrogen upshift experiment, to identify genetic variants affecting the activation of this pathway. We used this method to phenotype a recombinant population derived from two strains (SA and WE) with different geographic origins, which show opposite phenotypes for TORC1 activation by glutamine. Using this phenotypic information, we performed a QTL mapping that allowed us to identify several QTLs for TORC1 activation. Using a reciprocal hemizygous analysis, we validated GUS1, KAE1, PIB2, and UTH1 as genes responsible for the natural variation in the TORC1 activation. We observed that reciprocal hemizygous strains for KAE1 (ATPase required for t6A tRNA modification) gene showed the greatest phenotypic differences for TORC1 activation, with the hemizygous strain carrying the SA allele (KAE1SA) showing the higher TORC1 activation. In addition, we evaluated the fermentative capacities of the hemizygous strains under low nitrogen conditions, observing an antagonistic effect for KAE1SA allele, where the hemizygous strain containing this allele presented the lower fermentation rate. Altogether, these results highlight the importance of the tRNA processing in TORC1 activation and connects this pathway with the yeasts fermentation kinetics under nitrogen-limited conditions.This work was supported by CONICYT/FONDEQUIP (Grant EQM130158), Universidad de Santiago de Chile (Grant USA1799-VRIDEI 081998SS-PAP) to EK-P, CONICYT/PCI (Grant REDI170239) and CONICYT/FONDECYT (Grant 11170158) to FS, CSIC/i-LINKC (Grant 0946) to JG, Instituto Milenio iBio – Iniciativa Científica Milenio MINECON to LL, and CONICYT/FONDECYT (Grant 1150522) and USACH/DICYT (Grant 081571MF2_POSTDOC) to CM.Peer reviewe
    corecore