88 research outputs found

    No Evolutionary Response to Four Generations of Laboratory Selection on Antipredator Behavior of Aedes albopictus: Potential Implications for Biotic Resistance to Invasion

    Get PDF
    Aedes albopictus (Skuse) is an invasive container-dwelling mosquito and an important disease vector that co-occurs with the native mosquito, Aedes triseriatus (Say), and the predatory midge, Corethrella appandiculata (Grabham). Larval Ae. triseriatus show significantly greater antipredatory responses when compared to larval Ae. albopictus in the presence of predation cues from C. appendiculata. The potential for evolution of antipredatory behavioral responses to C. appendiculata in Ae. albopictus is unknown. We used a controlled laboratory selection experiment to test whether Ae. albopictus could evolve antipredatory behavioral responses to C. appendiculata predation. We subjected replicate Ae. albopictus populations to four generations of predation by C. appendiculata or a predator-free control treatment and compared the behavior and life history of Ae. albopictus in the two treatments in each generation. There were no differences in Ae. albopictus behavioral responses between predation and control lines in any of the four generations. There was also no evidence of differences in life histories between predation and control lines. Ae. albopictus is superior as a competitor compared with Ae. triseriatus, which it has replaced in areas where C. appendiculata are rare. Our results suggest limited potential for Ae. albopictus to evolve stronger antipredatory behavioral responses to C. appendiculata predation and imply that C. appendiculata will continue to act as an impediment to invasion by Ae. albopictus and replacement of Ae. triseriatus and to promote coexistence of these competitors

    Interspecific and intraspecific differences in foraging preferences of container-dwelling mosquitoes

    Get PDF
    Feeding preferences of larval container-dwelling mosquitoes are not well understood. Primary production is often absent in container systems and external inputs of animal and plant detritus supply the energy base of container food webs by supporting microorganism prey for mosquitoes. We quantified the feeding preferences of Aedes albopictus (Skuse), a non-native invasive mosquito, and Ochlerotahts triseriatus (Say), a native mosquito, when given a choice of animal and plant detritus. We tested for interpopulational (Illinois versus Florida) differences in feeding preferences, and quantified each species\u27 performance on these two detritus types. When given a choice, both species spent significantly more time feeding at an animal detritus patch. The Illinois populations of both species spent more time feeding at animal detritus patches than did the Florida populations, which spent more time feeding at leaf detritus than did Illinois populations. Both species reached a later instar and had higher survival when reared with animal versus leaf detritus. Ae. albopictus spent more time feeding at animal detritus and had higher survival when reared on either detritus type compared with Oc. triseriatus. Greater preference for and better performance exhibited by Ae. albopictus in high-quality food (animal detritus) may result in preemption of high quality food and may contribute to the superior competitive ability of Ae. albopictus relative to Oc. triseriatus

    Direct and indirect effects of animal detritus on growth, survival, and mass of invasive container mosquito Aedes albopictus (Diptera : Culicidae

    Get PDF
    Compared with plant detritus, animal detritus yields higher growth rates, survival, adult mass, and population growth of container-dwelling mosquitoes. It is unclear whether the benefit from animal detritus to larvae results from greater microorganism growth, direct ingestion of animal detritus by larvae, or some other mechanism. We tested alternative mechanisms by which animal detritus may benefit the invasive container-dwelling mosquito Aedes albopictus (Skuse) (Diptera: Culicidae). In the laboratory, larvae were reared under three conditions with access to 1) detritus, but where microorganisms in the water column were reduced through periodic flushing; 2) water column microorganisms, but larvae had no direct access to detritus; or 3) both water column microorganisms and detritus. Access treatments were conducted for three masses of animal detritus: 0.005, 0.010, and 0.020 g. Water column bacterial productivity (measured via incorporation of [H-3]leucine) decreased significantly with flushing and with larval presence. Removing microorganisms through flushing significantly reduced mass of adult mosquitoes (both sexes), and it significantly prolonged developmental times of females compared with treatments where water column microorganisms or microorganisms and detritus were available. Survival to adulthood was greatest when larvae had access to both water column microorganisms and 0.020 g of detritus, but it declined when only water column microorganisms were available or when 0.005 g of detritus was used. These findings indicate both direct (as a food source) and indirect (assisting with decomposition of detritus) roles of microorganisms in producing the benefit of animal detritus to container mosquito larvae

    Behavioral differences of invasive container-dwelling mosquitoes to a native predator

    Get PDF
    ABSTRACT Aquatic prey show behavioral modiÞcations in the presence of predation-risk cues that alleviate their risk from predation. Aedes albopictus (Skuse), Aedes japonicus (Theobald), and Culex pipiens L. are invasive mosquitoes in North America, and their larvae are prey for the native mosquito predator, Toxorhynchites rutilus (Coquillett). Ae. albopictus and Ae. japonicus are recent invaders, whereas Cx. pipiens has been in the United States for Ͼ100 yr. In the presence of predation-risk cues from Tx. rutilus larvae, Cx. pipiens larvae increased the time spent resting at the surface (least risky behavior) more than the other prey species. Ae. japonicus larvae increased resting at the surface of the containers more than Ae. albopictus larvae in the presence of predation-risk cues. Cx. pipiens larvae spent more time motionless at the surface even in the absence of predation-risk cues when compared with the other species, indicating that Cx. pipiens larvae are the least vulnerable prey. As compared with the other prey species, Ae. albopictus larvae exhibited more high-risk behaviors both in the presence and absence of predation-risk cues, indicating that they are the most vulnerable prey. Ae. albopictus is the superior competitor; however, predation by Tx. rutilus larvae may prevent competitive exclusion by Ae. albopictus and promote coexistence among the three prey species

    Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands

    Get PDF
    Abstract Background The current status of insecticide resistance in mosquitoes and the effects of insecticides on non-target insect species have raised the need for alternative control methods for malaria vectors. Predation has been suggested as one of the important regulation mechanisms for malaria vectors in long-lasting aquatic habitats, but the predation efficiency of the potential predators is largely unknown in the highlands of western Kenya. In the current study, we examined the predation efficiency of five predators on Anopheles gambiae s.s larvae in 24 hour and semi- field evaluations. Methods Predators were collected from natural habitats and starved for 12 hours prior to starting experiments. Preliminary experiments were conducted to ascertain the larval stage most predated by each predator species. When each larval instar was subjected to predation, third instar larvae were predated at the highest rate. Third instar larvae of An. gambiae were introduced into artificial habitats with and without refugia at various larval densities. The numbers of surviving larvae were counted after 24 hours in 24. In semi-field experiments, the larvae were counted daily until they were all either consumed or had developed to the pupal stage. Polymerase chain reaction was used to confirm the presence of An. gambiae DNA in predator guts. Results Experiments found that habitat type (P < 0.0001) and predator species (P < 0.0001) had a significant impact on the predation rate in the 24 hour evaluations. In semi-field experiments, predator species (P < 0.0001) and habitat type (P < 0.0001) were significant factors in both the daily survival and the overall developmental time of larvae. Pupation rates took significantly longer in habitats with refugia. An. gambiae DNA was found in at least three out of ten midguts for all predator species. Gambusia affins was the most efficient, being three times more efficient than tadpoles. Conclusion These experiments provide insight into the efficiency of specific natural predators against mosquito larvae. These naturally occurring predators may be useful in biocontrol strategies for aquatic stage An. gambiae mosquitoes. Further investigations should be done in complex natural habitats for these predators

    An Experimental Field Study of Delayed Density Dependence in Natural Populations of Aedes albopictus

    Get PDF
    Aedes albopictus, a species known to transmit dengue and chikungunya viruses, is primarily a container-inhabiting mosquito. The potential for pathogen transmission by Ae. albopictus has increased our need to understand its ecology and population dynamics. Two parameters that we know little about are the impact of direct density-dependence and delayed density-dependence in the larval stage. The present study uses a manipulative experimental design, under field conditions, to understand the impact of delayed density dependence in a natural population of Ae. albopictus in Raleigh, North Carolina. Twenty liter buckets, divided in half prior to experimentation, placed in the field accumulated rainwater and detritus, providing oviposition and larval production sites for natural populations of Ae. albopictus. Two treatments, a larvae present and larvae absent treatment, were produced in each bucket. After five weeks all larvae were removed from both treatments and the buckets were covered with fine mesh cloth. Equal numbers of first instars were added to both treatments in every bucket. Pupae were collected daily and adults were frozen as they emerged. We found a significant impact of delayed density-dependence on larval survival, development time and adult body size in containers with high larval densities. Our results indicate that delayed density-dependence will have negative impacts on the mosquito population when larval densities are high enough to deplete accessible nutrients faster than the rate of natural food accumulation

    Behavioural responses of Anopheles gambiae sensu stricto M and S molecular form larvae to an aquatic predator in Burkina Faso

    Get PDF
    Background: Predation of aquatic immature stages has been identified as a major evolutionary force driving habitat segregation and niche partitioning in the malaria mosquito Anopheles gambiae sensu stricto in the humid savannahs of Burkina Faso, West Africa. Here, we explored behavioural responses to the presence of a predator in wild populations of the M and S molecular forms of An. gambiae that typically breed in permanent (e.g., rice field paddies) and temporary (e.g., road ruts) water collections. Methods: Larvae used in these experiments were obtained from eggs laid by wild female An. gambiae collected from two localities in south-western Burkina Faso during the 2008 rainy season. Single larvae were observed in an experimental arena, and behavioural traits were recorded and quantified a) in the absence of a predator and b) in the presence of a widespread mosquito predator, the backswimmer Anisops jaczewskii. Differences in the proportion of time allocated to each behaviour were assessed using Principal Component Analysis and Multivariate Analysis of Variance. Results: The behaviour of M and S form larvae was found to differ significantly; although both forms mainly foraged at the water surface, spending 60-90% of their time filtering water at the surface or along the wall of the container, M form larvae spent on average significantly more time browsing at the bottom of the container than S form larvae (4.5 vs. 1.3% of their overall time, respectively; P < 0.05). In the presence of a predator, larvae of both forms modified their behaviour, spending significantly more time resting along the container wall (P < 0.001). This change in behaviour was at least twice as great in the M form (from 38.6 to 66.6% of the time at the wall in the absence and presence of the predator, respectively) than in the S form (from 48.3 to 64.1%). Thrashing at the water surface exposed larvae to a significantly greater risk of predation by the notonectid (P < 0.01), whereas predation occurred significantly less often when larvae were at the container wall (P < 0.05) and might reflect predator vigilance. Conclusions: Behavioural differences between larvae of the M and S form of An. gambiae in response to an acute predation risk is likely to be a reflection of different trade-offs between foraging and predator vigilance that might be of adaptive value in contrasting aquatic ecosystems. Future studies should explore the relevance of these findings under the wide range of natural settings where both forms co-exist in Africa
    corecore