19 research outputs found

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Metoprolol and Its Degradation and Transformation Products Using AOPs—Assessment of Aquatic Ecotoxicity Using QSAR

    No full text
    Pharmaceuticals are found in waterbodies worldwide. Conventional sewage treatment plants are often not able to eliminate these micropollutants. Hence, Advanced Oxidation Processes (AOPs) have been heavily investigated. Here, metoprolol is exposed to UV irradiation, hydrogen peroxide, and ozonation. Degradation was analyzed using chemical kinetics both for initial and secondary products. Photo-induced irradiation enhanced by hydrogen peroxide addition accelerated degradation more than ozonation, leading to complete elimination. Degradation and transformation products were identified by high-performance liquid-chromatography coupled to high-resolution higher-order mass spectrometry. The proposed structures allowed to apply Quantitative Structure-Activity Relationship (QSAR) analysis to predict ecotoxicity. Degradation products were generally associated with a lower ecotoxicological hazard to the aquatic environment according to OECD QSAR toolbox and VEGA. Comparison of potential structural isomers suggested forecasts may become more reliable with larger databases in the future

    Lichtheimia species exhibit differences in virulence potential.

    Get PDF
    Although the number of mucormycosis cases has increased during the last decades, little is known about the pathogenic potential of most mucoralean fungi. Lichtheimia species represent the second and third most common cause of mucormycosis in Europe and worldwide, respectively. To date only three of the five species of the genus have been found to be involved in mucormycosis, namely L. corymbifera, L. ramosa and L. ornata. However, it is not clear whether the clinical situation reflects differences in virulence between the species of Lichtheimia or whether other factors are responsible. In this study the virulence of 46 strains of all five species of Lichtheimia was investigated in chicken embryos. Additionally, strains of the closest-related genus Dichotomocladium were tested. Full virulence was restricted to the clinically relevant species while all strains of L. hyalospora, L. sphaerocystis and Dichotomocladium species were attenuated. Although virulence differences were present in the clinically relevant species, no connection between origin (environmental vs clinical) or phylogenetic position within the species was observed. Physiological studies revealed no clear connection of stress resistance and carbon source utilization with the virulence of the strains. Slower growth at 37°C might explain low virulence of L. hyalospora, L. spaherocystis and Dichotomocladium; however, similarly slow growing strains of L. ornata were fully virulent. Thus, additional factors or a complex interplay of factors determines the virulence of strains. Our data suggest that the clinical situation in fact reflects different virulence potentials in the Lichtheimiaceae

    Virulence of 46 strains of all five <i>Lichtheimia</i> species in the embryonated egg.

    No full text
    <p>Virulence of strains from environmental, veterinarian and clinical origin was compared to the reference strain <i>L. corymbifera</i> FSU 9682 by Log rank test (P<0.01).</p

    The twelve representative <i>Lichtheimia</i> and four <i>Dichotomocladium</i> strains used throughout this study.

    No full text
    <p>Type material is indicated with ‘T’ (type strain) or ‘NT’ (neotype strain). CBS, Centraalbureau voor Schimmelcultures Utrecht, The Netherlands; CNM-CM, Mould Collection of the Spanish National Center for Microbiology, Instituto de Salud Carlos III, Spain; IBML, Institute for Bacteriology and Mycology, Faculty of Veterinary Medicine at the University of Leipzig, Germany; FSU, Jena Microbial Resource Collection (formerly: Fungal Reference Center of the Friedrich Schiller University Jena, Germany).</p

    Physiology and virulence of <i>Lichtheimia</i> and <i>Dichotomocladium</i> strains.

    No full text
    <p>Heat map generated from virulence and physiological data of 12 representative strains of <i>Lichtheimia</i> and 4 strains of <i>Dichotomocladium</i> species. Virulence is expressed as percent mortality of chicken embryos. Growth rates are expressed as percent growth of the reference strain and stress resistance as percent growth of control without stressor. The <i>L. corymbifera</i> FSU 9682 was used as reference strain and values obtained with this strain were set as ‘0’ by subtracting the values of the reference strain from all other values.</p

    Phylogenetic tree of all used strains.

    No full text
    <p>Phylogenetic tree based on ITS, 28S and 18S rDNA sequences of 46 <i>Lichtheimia</i> isolates from environmental (e), veterinary (v) and clinical (c) sources. Source was not known for 6 strains (u). Strains attenuated in comparison to <i>L. corymbifera</i> FSU 9682 (ref) are highlighted in light gray. Strains which were unable to grow at 37°C (not used for infection experiments) are highlighted in dark grey. Only bootstrap values below 0.9 are indicated.</p

    Dose- and age-dependent mortality of chicken embryos after infection with <i>L. corymbifera</i> FSU 9682.

    No full text
    <p>(n = 20) eggs per group, experiments were performed two (10<sup>6</sup> and 10<sup>5</sup> conidia per egg) to three (10<sup>2</sup> to 10<sup>4</sup> conidia per egg) times. Data are shown as Kaplan- Meyer curves. (A) Eggs were infected at developmental day 10 with different doses of spores as indicated. (B) Embryos were infected as indicated on developmental day (DD) 8, 10 or 12 with 10<sup>3</sup> spores per egg.</p
    corecore