18 research outputs found

    Characterization of a Novel Fibroblast Growth Factor 10 (Fgf10) Knock-In Mouse Line to Target Mesenchymal Progenitors during Embryonic Development

    Get PDF
    Fibroblast growth factor 10 (Fgf10) is a key regulator of diverse organogenetic programs during mouse development, particularly branching morphogenesis. Fgf10-null mice suffer from lung and limb agenesis as well as cecal and colonic atresia and are thus not viable. To date, the Mlcv1v-nLacZ-24 transgenic mouse strain (referred to as Fgf10LacZ), which carries a LacZ insertion 114 kb upstream of exon 1 of Fgf10 gene, has been the only strain to allow transient lineage tracing of Fgf10-positive cells. Here, we describe a novel Fgf10Cre-ERT2 knock-in line (Fgf10iCre) in which a Cre-ERT2-IRES-YFP cassette has been introduced in frame with the ATG of exon 1 of Fgf10 gene. Our studies show that Cre-ERT2 insertion disrupts Fgf10 function. However, administration of tamoxifen to Fgf10iCre; Tomatoflox double transgenic embryos or adult mice results in specific labeling of Fgf10-positive cells, which can be lineage-traced temporally and spatially. Moreover, we show that the Fgf10iCre line can be used for conditional gene inactivation in an inducible fashion during early developmental stages. We also provide evidence that transcription factors located in the first intron of Fgf10 gene are critical for maintaining Fgf10 expression over time. Thus, the Fgf10iCre line should serve as a powerful tool to explore the functions of Fgf10 in a controlled and stage-specific manner

    IL-10 administration reduces PGE-2 levels and promotes CR3-mediated clearance of Escherichia coli K1 by phagocytes in meningitis

    Get PDF
    Ineffectiveness of antibiotics in treating neonatal Escherichia coli K1 meningitis and the emergence of antibiotic-resistant strains evidently warrants new prevention strategies. We observed that administration of interleukin (IL)-10 during high-grade bacteremia clears antibiotic-sensitive and -resistant E. coli from blood of infected mice. Micro-CT studies of brains from infected animals displayed gross morphological changes similar to those observed in infected human neonates. In mice, IL-10, but not antibiotic or anti-TNF antibody treatment prevented brain damage caused by E. coli. IL-10 administration elevated CR3 expression in neutrophils and macrophages of infected mice, whereas infected and untreated mice displayed increased expression of FcγRI and TLR2. Neutrophils or macrophages pretreated with IL-10 ex vivo exhibited a significantly greater microbicidal activity against E. coli compared with cells isolated from wild-type or IL-10−/− mice. The protective effect of IL-10 was abrogated when CR3 was knocked-down in vivo by siRNA. The increased expression of CR3 in phagocytes was caused by inhibition of prostaglandin E-2 (PGE-2) levels, which were significantly increased in neutrophils and macrophages upon E. coli infection. These findings describe a novel modality of IL-10–mediated E. coli clearance by diverting the entry of bacteria via CR3 and preventing PGE-2 formation in neonatal meningitis

    The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats

    No full text
    BACKGROUND: Necrotising enterocolitis (NEC) is one of the most common and fatal intestinal disorders in preterm infants. Breast-fed infants are at lower risk for NEC than formula-fed infants, but the protective components in human milk have not been identified. In contrast to formula, human milk contains high amounts of complex glycans. OBJECTIVE: To test the hypothesis that human milk oligosaccharides (HMO) contribute to the protection from NEC. METHODS: Since human intervention studies are unfeasible due to limited availability of HMO, a neonatal rat NEC model was used. Pups were orally gavaged with formula without and with HMO and exposed to hypoxia episodes. Ileum sections were scored blindly for signs of NEC. Two-dimensional chromatography was used to determine the most effective HMO, and sequential exoglycosidase digestions and linkage analysis was used to determine its structure. RESULTS: Compared to formula alone, pooled HMO significantly improved 96-hour survival from 73.1% to 95.0% and reduced pathology scores from 1.98±1.11 to 0.44±0.30 (p<0.001). Within the pooled HMO, a specific isomer of disialyllacto-N-tetraose (DSLNT) was identified to be protective. Galacto-oligosaccharides, currently added to formula to mimic some of the effects of HMO, had no effect. CONCLUSION: HMO reduce NEC in neonatal rats and the effects are highly structure specific. If these results translate to NEC in humans, DSLNT could be used to prevent or treat NEC in formula-fed infants, and its concentration in the mother’s milk could serve as a biomarker to identify breast-fed infants at risk of developing this disorder

    The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats

    No full text
    Background Necrotising enterocolitis (NEC) is one of the most common and fatal intestinal disorders in preterm infants. Breast-fed infants are at lower risk for NEC than formula-fed infants, but the protective components in human milk have not been identified. In contrast to formula, human milk contains high amounts of complex glycans. Objective To test the hypothesis that human milk oligosaccharides (HMO) contribute to the protection from NEC. Methods Since human intervention studies are unfeasible due to limited availability of HMO, a neonatal rat NEC model was used. Pups were orally gavaged with formula without and with HMO and exposed to hypoxia episodes. Ileum sections were scored blindly for signs of NEC. Two-dimensional chromatography was used to determine the most effective HMO, and sequential exoglycosidase digestions and linkage analysis was used to determine its structure. Results Compared to formula alone, pooled HMO significantly improved 96-hour survival from 73.1% to 95.0% and reduced pathology scores from 1.98±1.11 to 0.44±0.30 (p<0.001). Within the pooled HMO, a specific isomer of disialyllacto-N-tetraose (DSLNT) was identified to be protective. Galacto-oligosaccharides, currently added to formula to mimic some of the effects of HMO, had no effect. Conclusion HMO reduce NEC in neonatal rats and the effects are highly structure specific. If these results translate to NEC in humans, DSLNT could be used to prevent or treat NEC in formula-fed infants, and its concentration in the mother's milk could serve as a biomarker to identify breast-fed infants at risk of developing this disorder

    miR-142-3p regulates cortical oligodendrocyte gene co-expression networks associated with tauopathy.

    No full text
    Oligodendrocytes exist in a heterogenous state and are implicated in multiple neuropsychiatric diseases including dementia. Cortical oligodendrocytes are a glial population uniquely positioned to play a key role in neurodegeneration by synchronizing circuit connectivity but molecular pathways specific to this role are lacking. We utilized oligodendrocyte-specific translating ribosome affinity purification and RNA-seq (TRAP-seq) to transcriptionally profile adult mature oligodendrocytes from different regions of the central nervous system. Weighted gene co-expression network analysis reveals distinct region-specific gene networks. Two of these mature myelinating oligodendrocyte gene networks uniquely define cortical oligodendrocytes and differentially regulate cortical myelination (M8) and synaptic signaling (M4). These two cortical oligodendrocyte gene networks are enriched for genes associated with dementia including MAPT and include multiple gene targets of the regulatory microRNA, miR-142-3p. Using a combination of TRAP-qPCR, miR-142-3p overexpression in vitro, and miR-142-null mice, we show that miR-142-3p negatively regulates cortical myelination. In rTg4510 tau-overexpressing mice, cortical myelination is compromised, and tau-mediated neurodegeneration is associated with gene co-expression networks that recapitulate both the M8 and M4 cortical oligodendrocyte gene networks identified from normal cortex. We further demonstrate overlapping gene networks in mature oligodendrocytes present in normal cortex, rTg4510 and miR-142-null mice, and existing datasets from human tauopathies to provide evidence for a critical role of miR-142-3p-regulated cortical myelination and oligodendrocyte-mediated synaptic signaling in neurodegeneration
    corecore