108 research outputs found
UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs
The 5′ and 3′ untranslated regions of eukaryotic mRNAs play crucial roles in the post-transcriptional regulation of gene expression through the modulation of nucleo-cytoplasmic mRNA transport, translation efficiency, subcellular localization and message stability. UTRdb is a curated database of 5′ and 3′ untranslated sequences of eukaryotic mRNAs, derived from several sources of primary data. Experimentally validated functional motifs are annotated (and also collated as the UTRsite database) and cross-links to genomic and protein data are provided. The integration of UTRdb with genomic and protein data has allowed the implementation of a powerful retrieval resource for the selection and extraction of UTR subsets based on their genomic coordinates and/or features of the protein encoded by the relevant mRNA (e.g. GO term, PFAM domain, etc.). All internet resources implemented for retrieval and functional analysis of 5′ and 3′ untranslated regions of eukaryotic mRNAs are accessible at http://www.ba.itb.cnr.it/UTR/
PomBase 2015: updates to the fission yeast database.
PomBase (http://www.pombase.org) is the model organism database for the fission yeast Schizosaccharomyces pombe. PomBase provides a central hub for the fission yeast community, supporting both exploratory and hypothesis-driven research. It provides users easy access to data ranging from the sequence level, to molecular and phenotypic annotations, through to the display of genome-wide high-throughput studies. Recent improvements to the site extend annotation specificity, improve usability and allow for monthly data updates. Both in-house curators and community researchers provide manually curated data to PomBase. The genome browser provides access to published high-throughput data sets and the genomes of three additional Schizosaccharomyces species (Schizosaccharomyces cryophilus, Schizosaccharomyces japonicus and Schizosaccharomyces octosporus)
PomBase: a comprehensive online resource for fission yeast.
PomBase (www.pombase.org) is a new model organism database established to provide access to comprehensive, accurate, and up-to-date molecular data and biological information for the fission yeast Schizosaccharomyces pombe to effectively support both exploratory and hypothesis-driven research. PomBase encompasses annotation of genomic sequence and features, comprehensive manual literature curation and genome-wide data sets, and supports sophisticated user-defined queries. The implementation of PomBase integrates a Chado relational database that houses manually curated data with Ensembl software that supports sequence-based annotation and web access. PomBase will provide user-friendly tools to promote curation by experts within the fission yeast community. This will make a key contribution to shaping its content and ensuring its comprehensiveness and long-term relevance
Selecting for useful properties of plants and fungi – Novel approaches, opportunities, and challenges
Humans use plants and fungi for a wide range of purposes and, over millennia, have improved wild species by selecting for and combining genetic variation. Improvements in DNA sequencing technologies have enhanced our capacity to identify and manipulate genetic diversity, increasing the range of variation that can be utilized, and accelerating the breeding cycle to reduce the time taken to develop and put new varieties to use. Most recently, the CRISPR/Cas9 gene editing technology has greatly increased our capacity to directly introduce novel genetic variants without unwanted associated material. Moreover, increased knowledge of metabolic pathways resulting from genomic analysis can be used to design new varieties with desired properties with increased precision. Selecting for, or engineering, desirable variants has increased the usefulness of plants and fungi to humans, but at the cost of reducing their genetic diversity, decreasing their resilience and reducing the stock of variation available for future use. Conservation of genetic biodiversity is thus an essential counterpart of crop improvement and is essential to ensure that crop species retain resilience to emerging threats. Conservation efforts are focused on orphan crops, wild relatives of crop species, and landraces; in and exsitu efforts are complementary. Informatic approaches can inform use of these materials in breeding programmes even in the absence of genomic information. The application of some of these approaches may be restricted by ethical, legal, or organizational obstacles. If these can be overcome, there is great potential to unlock previously untapped reservoirs of biodiversity for human benefit
WormBase 2016: expanding to enable helminth genomic research
WormBase (www.wormbase.org) is a central repository for research data on the biology, genetics and genomics of Caenorhabditis elegans and other nematodes. The project has evolved from its original remit to collect and integrate all data for a single species, and now extends to numerous nematodes, ranging from evolutionary comparators of C. elegans to parasitic species that threaten plant, animal and human health. Research activity using C. elegans as a model system is as vibrant as ever, and we have created new tools for community curation in response to the ever-increasing volume and complexity of data. To better allow users to navigate their way through these data, we have made a number of improvements to our main website, including new tools for browsing genomic features and ontology annotations. Finally, we have developed a new portal for parasitic worm genomes. WormBase ParaSite (parasite.wormbase.org) contains all publicly available nematode and platyhelminth annotated genome sequences, and is designed specifically to support helminth genomic research
Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements
Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector-pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations
RNAcentral: A vision for an international database of RNA sequences
During the last decade there has been a great increase in the number of noncoding RNA genes identified, including new classes such as microRNAs and piRNAs. There is also a large growth in the amount of experimental characterization of these RNA components. Despite this growth in information, it is still difficult for researchers to access RNA data, because key data resources for noncoding RNAs have not yet been created. The most pressing omission is the lack of a comprehensive RNA sequence database, much like UniProt, which provides a comprehensive set of protein knowledge. In this article we propose the creation of a new open public resource that we term RNAcentral, which will contain a comprehensive collection of RNA sequences and fill an important gap in the provision of biomedical databases. We envision RNA researchers from all over the world joining a federated RNAcentral network, contributing specialized knowledge and databases. RNAcentral would centralize key data that are currently held across a variety of databases, allowing researchers instant access to a single, unified resource. This resource would facilitate the next generation of RNA research and help drive further discoveries, including those that improve food production and human and animal health. We encourage additional RNA database resources and research groups to join this effort. We aim to obtain international network funding to further this endeavor
Data management challenges for artificial intelligence in plant and agricultural research [version 2; peer review: 2 approved]
Artificial Intelligence (AI) is increasingly used within plant science, yet it is far from being routinely and effectively implemented in this domain. Particularly relevant to the development of novel food and agricultural technologies is the development of validated, meaningful and usable ways to integrate, compare and visualise large, multi-dimensional datasets from different sources and scientific approaches. After a brief summary of the reasons for the interest in data science and AI within plant science, the paper identifies and discusses eight key challenges in data management that must be addressed to further unlock the potential of AI in crop and agronomic research, and particularly the application of Machine Learning (AI) which holds much promise for this domain
- …