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Abstract 
Artificial Intelligence (AI) is increasingly used within plant science, yet 
it is far from being routinely and effectively implemented in this 
domain. Particularly relevant to the development of novel food and 
agricultural technologies is the development of validated, meaningful 
and usable ways to integrate, compare and visualise large, multi-
dimensional datasets from different sources and scientific 
approaches. After a brief summary of the reasons for the interest in 
data science and AI within plant science, the paper identifies and 
discusses eight key challenges in data management that must be 
addressed to further unlock the potential of AI in crop and agronomic 
research, and particularly the application of Machine Learning (AI) 
which holds much promise for this domain.
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1. Introduction
Data science is central to the development of plant and agricultural research and its application to social and environmental
problems of a global scale, such as food security, biodiversity and climate change. Artificial Intelligence (AI) offers great
potential towards elucidating and managing the complexity of biological data, organisms and systems. It constitutes a
particularly promising approach for the plant sciences, which aremarked by the distinctive challenge of understanding not
only complex gene-environment (GxE) interactions that span multiple scales from the cellular through the microbiome to
climate systems, but also their interaction with rapidly shifting humanmanagement practices (GxExM) in agricultural and
other settings, whose reliance on digital innovations is growing at a fast pace (Wang et al. 2020; Harfouche et al. 2019).
Accordingly, examples of useful applications of AI – and particularly Machine Learning (ML) – to plant science contexts
are increasing, with the Covid-19 pandemic crisis further accelerating interest in this approach (King 2020).

Nevertheless, we are still far from a research landscape in which AI can be routinely and effectively implemented. A key
obstacle concerns the development and implementation of effective and reliable data management strategies. Developing
reliable and reproducible AI applications depends on having validated, meaningful and usable ways to integrate large,
multi-dimensional datasets from different sources and scientific approaches. This is especially relevant to the develop-
ment of novel food and agricultural technologies, which rely on research from diverse fields including fundamental plant
biology, crop research, conservation science, soil science, plant pathology, pest/pollinator ecology and management,
water and land management, climate modelling, agronomy and economics.

This paper explores data-related challenges to potential applications of AI in plant science, with particular attention paid
to the analysis of GxExM interactions of relevance to crop science and agricultural implementations. It brings together
the experiences of an interdisciplinary set of researchers from the plant and agricultural sciences, the engineering and
computational sciences and the social studies of science, all of whom are working with complex datasets spanning
genomic, physiological and environmental data and computationalmethods of analysis. The first part of the paper provides
a brief overview of contemporaryAI and data science applicationswithin plant science, with particular attention paid to the
UK and European landscape where the authors are based. The second part identifies and discusses eight challenges in data
management that must be addressed to further unlock the potential of AI for plant science and agronomic research. We
conclude with a reflection on how transdisciplinary and international collaborations on data management can foster
impactful and socially responsible AI in this domain.

2. AI in plant research: current status and challenges
Following wider trends in the biosciences, both basic and applied plant sciences have increasingly emphasised data-
intensive modes of research over the last two decades (Leonelli et al. 2017; Leonelli 2016, 2019). The capacity to measure
biological complexity at the molecular, organismal and environmental scales has increased dramatically, as demonstrated
by: advances in high-throughput genomics and norms and tools that have supported the development of a commons of
publicly shared genomic data; the development of platforms for high-throughput plant phenotyping in the laboratory, the
greenhouse and the field; and the proliferation of remote sensing devices on-farm (Tardieu et al. 2017). Such platforms and
associated data generation have contributed to a booming AI industry in commercial agriculture, focused on the delivery of
“precision” farming strategies, with estimates that the market will be worth US$1.55 billion by 2025.1 Indeed, AI
applications in plant research and agriculture have so far primarily benefited large-scale industrial farming (Carbonell
2016), with R&D investment focused on commodity crops such as wheat, rice and maize; high-value horticulture crops
such as soft fruits; and the enhancement of large-scale orchards and vineyards. In addition to this, however, the amount and
type of data being collected, alongside advancements inAImethods, offer the opportunity to ask and address newquestions
of great importance to plant scientists and agricultural stakeholders around the world (Tsiligiridis & Ainali 2018).

1https://www.marketreportsworld.com/global-artificial-intelligence-ai-in-agriculture-market-13268433.

REVISED Amendments from Version 1

With many thanks to the constructive and helpful reports by the two referees, we have revised the paper by: (1) adding
nuance to the sometimes too optimistic conclusions concerning proposed solution to data challenges for AI in plant
science; (2) clarifying the scope of some of the claims; and (3) adding a table outlining some key examples and applications
of AI in plant science. For more details, see below for point-by-point responses to the referees.

Any further responses from the reviewers can be found at the end of the article
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AI is the field of study and development of computer hardware and software that perform functions, such as problem-
solving or learning, which have traditionally been considered properties of intelligent life. A range of research fields have
contributed to the development of AI, currently the most prominent of which is machine learning (ML), the design of
algorithms for data processing, prediction and decision support that are able to learn from a priori (“supervised”),
inductive (“unsupervised”), and reward-based (“reinforcement”) experience (Mitchell 1997).2 This approach is partic-
ularly significant for applications that do not require an exact understanding of how the algorithm has reached its decision,
as long as it has predictive power and it is possible to reproduce it (Napoletani et al. 2015).

ML has been the dominant AI technology applied to plant and agricultural research so far. Many successful examples
come from bioinformatics, where researchers may not need to worry about why a sequence of amino acids was classified
as alpha-helical in structure as long as we know how reliable that prediction is, for instance. Indeed, ML has been widely
used in the analysis of sequence data, for example to identify signal peptides and functional domains in amino-acid
sequences via neural nets and profile hidden Markov models, such as Pfam and SMART (El-Gebali et al. 2019, and see
Larrañaga et al. 2006 for other classic examples). One key example from genomics that goes back to the 1990s is the
use of models to identify genes and predict their functions based on training data from multiple species (Hayes &
Borodowski 1998; Birney et al. 2004; Zou et al. 2019). This has ongoing relevance for orphan and non-model crop
research, where experimental approaches such as CRISPR knockouts to identify and validate gene function for individual
species may not be feasible or cost-effective, but results may be inferred from experiments in model species (Zou et al.
2019). Other challenges in genomics that can be addressed include the inference of gene regulatory networks (Mochida
et al. 2018) and the identification of pathogen virulence effector genes from genomic sequence data (Sperschneider
2019), for example. Thus, ML can help to identify correlations not readily picked up by more traditional approaches and
in turn suggest fruitful directions for further research. To date, whether or not correlations have biological meaning
typically needs to be ascertained via experiment and/or observational data (Leonelli 2014; Smith &Cordes 2019). Efforts
towards explainable AI are, however, gaining momentum and both methodological and computational techniques are
emerging which promise to support biological use of ML (Schramowski et al. 2020).

Alongside applications in genomics, AI offers new opportunities for linking genotypes to phenotypes (Wang et al. 2020).
Image-based plant phenotyping has proven a particularly fertile area for the application of ML techniques, with the rapid
development of non-destructivemethods for the evaluation of plant responses to biotic and abiotic stress (Singh et al. 2016;
Mohanty et al. 2016; Ramcharan et al. 2017) and estimation of photosynthetic capacity (Fu et al. 2019), as well as a
variety of feature detection, counting, classification, and semantic segmentation tasks (Jiang&Li 2020).With the arrival of
deep supervised convolutional networks, progress in the performance ofML algorithms in predicting leaf counts increased
considerably (Dobrescu et al. 2017). ConvolutionalNeuralNetworks (CNNs)were also shown to be capable of performing
challenging tasks of point feature detection (Pound et al. 2018) and pixelwise segmentation (Yasrab et al. 2019,
Soltaninejad et al. 2020) on both roots and shoots in a variety of imagingmodalities in both laboratory and field environments
(Gao et al. 2020). These technologies pose substantial new opportunities for analysing and understanding GxExM
interactions through the integration of high throughput phenotyping data with other forms of research data, including
genomic, field evaluation and climatic data.Aswell as addressing fundamental research questions,AI applications in this area
offer the opportunity to understand and improve a range of practical activities from crop breeding through agricultural
management (see Boxes 1 to 3).3

Box 1. AI opportunities: genomic selection.

Genomic Selection (GS) is an approach for estimating breeding values for individual plants that can guide breeders’
decisions for selection and crossing (Crossa et al. 2017), basedonmodelling associations betweenquantitative traits
and a genome-wide set of markers. Accuracy of predictive models for GS and rate of genetic gain can be increased
by employing ML, although the utility of ML in comparison to existing statistical models vary depending on the
characteristics of the trait of interest (Gonzalez-Camacho et al. 2018). A promising opportunity for the improvement
of GS lies in using ML for the integration and the analysis of data from different omics layers (such as proteomics,
metabolomics, metagenomics) that mediate between genotype and phenotype, facilitating the prediction of
quantitative traits based on biologicalmechanisms rather than genetic marker associations and thereby increasing
the reliability and utility ofmodels for awider range of populations than is currently possible (Harfouche et al. 2019).

2We recognise that there is disagreement over whether ML can always be classified as AI, given that the application of ML techniques often
requires extensive manual feature extraction in order to process data more effectively for analysis. In this regard, ML may be considered closer
to statistical methods than to AI. For the purposes of this paper, where many of the data challenges are shared between existing methods of
ML and AI sensu stricto, we will treat the two as a continuum of techniques where AI is the more encompassing and general term.
3A list of examples of ML and AI applications discussed in this paper is provided in Table 2 at the end of this article.
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Nevertheless, the effective implementation of AI in plant and agricultural science depends in large measure on
establishing a favourable data landscape, consisting of the networks and practices of sourcing, managing andmaintaining
data. This is particularly important for research undertaken outside of resource-intensive commercial sites, including
research in and for the Global South. Identifying the primary challenges faced by users and would-be users of AI in the
contemporary data landscape of plant science is necessary in order to understand the possibilities and limitations afforded
by AI for public as well as private plant and agricultural research. Here we build on the experiences of leading UK-based
researchers in these areas to identify and discuss eight key data challenges, summarised in Table 1. These challenges span
technical, social and governmental domains, and will require concerted, international and transdisciplinary efforts from a
range of stakeholders to address. In the remainder of the paper, we review these challenges in detail, drawing on a range of
examples from fundamental and translational plant science. Several of the challenges are shared with the biosciences
more broadly, reflecting the conditions and complexity of biological research, while others are specific to plant science
and agriculture. In the conclusion, we offer some reflections on how these challenges could be overcome.

3. Data challenges
3.1 Data diversity and continuing obstacles to data sharing
Biological research tends to be very fragmented compared with other sciences, and biological data is highly heteroge-
neous as a result (Hey et al. 2009;Marx 2013; Leonelli 2019; Strasser 2019). A key reason for this is the attention paid by
biologists to the unique characteristics of the target systems that they are studying: different species of mushrooms,
bacteria, trees, ferns and mammals can behave and interact with their environment in fundamentally different ways,
which in turn affects their different structures, functioning and reproduction. Biodiversity thus encourages the production
of research methods and instruments specifically tailored to the ‘endless forms most beautiful’ in question—with
different laboratories producing data in a wide variety of ways. Added to this, there is the multiplicity of purposes for
which biological research is conducted, which in the plant and crop sciences include the production of genetically
engineered crops, understanding growth conditions, improving crop yield and identifying medically useful compounds;

Box 2. AI opportunities: long term experiments.

Long-term experiments (LTE), where the same crop or crop rotation is grown for many years subject to a range of
different management or treatment options, have an important place in agricultural research. Data from these
experiments enable separation of agronomic and environmental (weather) influences on crop yield, and soil health
over time and have done much to influence modern farming practices (e.g. Poulton et al. 2018; Jensen et al. 2020).
The "Classical Experiments" at RothamstedResearch (Parolini 2015,Macdonald et. al. 2018) are important examples.
The data from these experiments, some of which were started in 1843, are available and documented in the e-RA
data resource (Perryman et al. 2018). Data fromLTEs continue to be the subject of newanalyticalmethods (e.g. Addy
et al. 2020), yet remain a relatively untapped resource for knowledge discovery, in part because of the complexity of
the experimental designs and the difficulty in accounting properly for the changes thatmight have occurred during
their lifespans. To make LTEs more accessible for knowledge discovery, a recent initiative was launched by the
Global Long Term Experiment Network to catalogue LTEs using a standard meta-data schema. The use of ML
methods combining data from LTEs with local weather data might, for example, reveal hidden patterns in the data
linked to long-term or higher order interactions within the data which could provide useful insights into the impact
of future climate change.

Box 3. AI opportunities: agricultural monitoring.

AI offers many opportunities to improve the cost and labour efficiency of longstanding research and monitoring
tasks in research and agricultural settings. While such possibilities are most developed in commercial agricultural
settings, there are many opportunities too for the public research sector as well as for small or non-commercial
farmers, for example in agricultural settings where there is limited access to relevant scientific expertise.

Example (1): Assessing soil health is a keydriver of crop yields, yetwet soil chemistry analyses arebothexpensive and
time-consuming and generally not accessible by growers in low and middle-income countries. Using near-infrared
(NIR) and mid-infrared (MIR) soil spectroscopy data, ML models can be developed to predict soil characteristics
and nutrient content that are faster and cheaper to run (Data Study Group Team 2020). Such models could be
integrated with plant physiologymodels in the future to predict optimal crop performance in a given soil, and open
the possibility of the development of hand-held soil devices for use directly by farmers or local advisors in countries
where lab access and resources are limited.

Example (2): Conventional methods such as suction and light traps formonitoring the appearance andmigration of
airborne insects, including crop pests, which currently need manual identification can also be augmented by ML
models trained to recognise and classify insect species based on bioacoustic data (e.g. Potamitis et al. 2015, and
under development by the Rothamsted Insect Survey), connected to in-field sonic sensors. Such developments are
directed at increasing the scalability of the insect pest monitoring networks and also potentially removing the need
for manual steps for some insect species.

Page 5 of 28

F1000Research 2023, 10:324 Last updated: 27 NOV 2023



Table 1. Synoptic view of the data challenges, possible solutions and what can be lost and gained by
investment in those areas.

Data
challenges

Solutions Risks Payoff Trade-offs

Heterogeneity of
data types and
sources in
biology and
agriculture

Implement FAIR
principles for all
data types.
Acknowledge and
reward data
sources.

Inconsistent
standardisation
between domains
and communities.

New possibilities for
multi-scale analysis
integrating diverse
data types.

Difficulties in
implementing
standards while
retaining domain-
specific insights.

Selection and
digitisation of
data that is viable
for AI
applications

Clear and accessible
guidance on data
requirements for AI.
New procedures for
priority setting and
selecting data.

High labour costs of
digitisation and
analysis on
resources that may
not prove to be
significant.

AI tools and outputs
that push forward
the cutting edge of
plant science
research.

Data management
procedures may
take up a
considerable
budget and effort.

Ensuring
sufficient linkage
between
biological
materials and
data used for AI
applications

Clear
documentation of
material
provenance when
producing data and
throughout
analytical
workflows.

Increased
documentation
costs. Exposure of
commercially or
otherwise sensitive
materials.

Clear
understanding of
the biological scope
of AI tools.

Analysis of
documentation
around materials
requires specific
expertise and
effort.

Standardisation
and curation of
data and related
software to a level
appropriate for
AI applications

Development and
use of shared
semantic
standards.
Standardisation of
data at the point of
collection.

Potential to lose
system-specific
information that
does not fit
common standard.

Reusable multi-
source data sets.
Easier validation
and sharing
between groups.

Some plant data (e.
g. phenotypic
observations)
remain very
difficult to
standardise.

Obtaining
training and
adequate ground
truth data for
model validation
and development

Ensuring that data
quality
benchmarking is
tailored to analytical
purposes.
Expanded
collections of
ground truth and
training datasets.

Data quality
assessment
requires error
estimates and
information on data
collection, which
are often lacking.

Reproducible and
sound inferences
with clear scope of
validity.

Tailoring data to
specific research
goals runs counter
popular narrative
of AI relying on
‘representative’
training data and
‘generalizable’
solutions.

Access to and use
of computing and
modeling
platforms, and
related expertise

Making software
and models open
and adaptable
where appropriate,
and/or have clear
documentation on
their scope. Provide
researcherswith full
workflows, not only
software.

Software used
outside its range of
proven usefulness.
Danger of
extrapolation and
overfitting.

A suite of tools with
clearly marked
utility and relevance
for a wide range of
analytical tasks in
the plant sciences.

Difficulties in
getting the
required know-
how travel
together with
software and
models.

Improving
responsible data
access

Opening access to
datasets held by
government and
research
institutions.
Implementation of
data governance
regimes to protect
sensitive data and
ensure benefit
sharing.

“Digital feudalism”;
unequal
distribution of
benefits from public
or personal data.

Greater data
resources of direct
relevance to
agricultural and
other plant science
applications.

Ongoing
difficulties in
identifying and
implementing non-
exploitative,
equitable models
for data sharing.
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Table 1. Continued

Data
challenges

Solutions Risks Payoff Trade-offs

Engagement
across plant
scientists, data
scientists, and
other
stakeholders

Investment in and
promotion of data
services for plant
scientists.
Promotion of plant
science problems,
especially GxE
interactions, to ML
researchers.
Identification of and
investment in grand
challenges and
engagement.

High cost with
potentially limited
impact unless
closely targeted to
needs and interests
of researchers and
wider stakeholders.

Greater community
participation in the
development of ML
as a resource for
plant science.

Long term
investment whose
value depends on
active and regular
engagement of
stakeholders.

Table 2. Examples of machine learning and artificial intelligence applications in plant and agricultural
science discussed in this paper and methods used in those papers.

Example Section
discussed

Key ML/AI methods used Sources

Gene identification and
function prediction across
species

2 Various; see citations in review
paper

Zou et al. 2019

Inference of gene
regulatory networks

2 Bayesian networks, random
forest, Markov random fields,
tree-based models, dynamic
factor graph models

Mochida et al. 2018

Identification of pathogen
virulence effector genes
from genomic sequence
data

2 Support vector machine, random
forest, convolutional neural
networks, ensemble learning,
Bayesian networks, tree-based
models

Sperschneider 2019

Non-destructive evaluation
of plant responses to biotic
and abiotic stress

2 Support vector machine, artificial
neural networks, convolutional
neural networks

Singh et al. 2016; Mohanty
et al. 2016; Ramcharan et al.
2017

Automatic estimation of
photosynthetic capacity

2 Artificial neural networks,
support vector machine, least
absolute shrinkage and selection
operator (LASSO), random forest,
Gaussian process regression

Fu et al. 2019

Convolutional neural
networks for plant
phenotyping image
analysis

2 Convolutional neural networks,
support vector machine, random
forest, encoder-decoder model,
multi-loss multi-resolution
network, deep residual network

Jiang & Li 2020; Dobrescu
et al. 2017; Pound et al. 2017;
Yasrab et al. 2019;
Soltaninejad et al. 2020

Augmenting Genomic
Selection models in plant
breeding with machine
learning

Box 1 Bayesian regularized neural
networks, radial basis function
neural networks, reproducing
kernel Hilbert space, random
forest regression

Gonzalez-Camacho et al.
2018; Harfouche et al. 2019

Prediction of soil
characteristics from near-
infrared and mid-infrared
soil spectroscopy data

Box 3 Regularised linear models,
support vector mechanics,
tree-based models

Data Study Group Team 2020

Automatic identification of
crop pest insects using
bioacoustics data

Box 3 Support vector machines,
random forest, randomized trees
classifier, gradient boosting
classifier

Potamitis et al. 2015
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many of which also require the study of key environmental features such as soil and climate conditions. Moreover, the
translation of plant research into agronomic spaces is made especially complex by the multiplicity of stakeholders, with
breeders focused on the specific conditions in their target markets, farmers producing a large variety of data of potential
research interest as part of their everyday work, and many companies working in agritech (including companies
producing sensing devices for farms), although many data producers remain secretive around their own data practices
and datasets. Furthermore, there is a divergence between the large emphasis on omics data within academic plant science
and the equally strong focus on phenotypic data for crop evaluation favoured in more applied domains, which is only
partly mitigated by ongoing efforts to bridge this gap and exploit the complementary nature of these data resources
through integration and interoperability. Last but not least, there is no consensus on data formats, standards and methods
of analysis. Datasets are typically collected with a specific hypothesis or practical use in mind, with much data not
generated in machine-readable formats and data standards rarely prioritized when developing new methods or technol-
ogies. Data circulation is also limited, due to a lack of targeted incentives and necessary infrastructures as well as a
general reluctance from researchers to share their data beyond their immediate communities of collaborators. Many
research funders and institutions do not yet provide concrete incentives to make data publicly available, including
rewards and resources tomatch the significant labor involved. This has significant implications for researchers, especially
given the competitive culture predominant within the life sciences and the well-founded fear that spending resources on
data curation may lower the publication rate of any one group, with negative effects on their reputation and future
endeavors (Leonelli et al. 2017; European Commission 2017).

This fragmented data landscape limits the opportunities for the application of AI to plant research and agronomy.
For example, when object recognition software is applied to human faces, relatively homogeneous reference sets of
photographs are available for training, but equivalent data is not available when the same technologies are aimed at
identifying morphological traits in plants. The introduction of the FAIR principles (Wilkinson et al. 2018), stating that
data should be Findable, Accessible, Interoperable and Reusable, has greatly helped to address some of these issues.4

Some organisations are promoting the “FAIRification” of data using semantic web technologies (e.g. https://www.go-
fair.org), but even more limited forms of annotation, semantification and standardisation would significantly facilitate
applications within more restricted domains. Many molecular biology data are already integrated in structured, curated
and interlinked public repositories (Rigden & Fernández 2020), which are widely used by the research community. This
is not surprising given the historical ties between the development of sequencing technologies and the emergence of
computation (November 2012; Stevens 2013; Strasser 2019) and related database standards and classification initiatives
(Mackenzie et al. 2013) - often starting with data from model organisms grown in standard conditions like Arabidopsis
thaliana with large associated research communities (Leonelli & Ankeny 2012).

At the same time, many other types of data are not as standardised, and the heterogeneity of data formats and methods
across different areas of the life sciences is likely to affect the ways in which FAIR principles are implemented. Such
differential adoption of FAIR principles and resources may, again, constrain the potential for ML to integrate data across

Table 2. Continued

Example Section
discussed

Key ML/AI methods used Sources

Automatic digitisation of
herbaria specimens and
specimen metadata

3.2 Convolutional neural networks Carranza-Rojas et al. 2017;
Younis et al. 2018

Leaf-counting models for
plant phenotyping image
analysis

2, 3.6 Multi-task learning, adversarial
learning, layerwise relevance
propagation, guided back
propagation

Dobrescu et al. 2017, 2019,
2020; Giuffrida et al. 2019

Computer Vision Problems
in Plant Phenotyping
(CVPPP) workshops

3.8 Various; see citations in review
paper

Tsaftaris & Sharr 2019

Image analysis for
automatic disease
diagnosis in multiple crops
using PlantVillage Nuru

3.8 Convolutional neural networks Ramcharan et al. 2019

4In short, the existence of the data should be published, procedures for accessing the data should be available, sufficient metadata should be
provided to allow the data to be understood and appropriately repurposed and common formats and APIs should be used to facilitate the
integration of different data sets.
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multiple domains. Indeed, while the FAIR data principles are increasingly being applied across the plant sciences
(Rodriguez-Iglesias et al. 2016; Pommier et al. 2019; Reiser et al. 2018), different projects have developed different
elements of FAIR depending on their specific goals and context. Some applications, such as FAIDARE (FAIR Data-
finder for Agronomic REsearch)5 have focused on Findability. Others, such as the Crop Ontology and related ontologies
in the Planteome project, have focused on interoperability and semantic standards. AI and ML applications depend
heavily on the Interoperability and Reusability dimensions of FAIR, but these have received less attention overall than
Findability and Accessibility. As well as the semantic efforts mentioned above, more recent initiatives such as BrAPI
(Breeding API; Selby et al. 2019) and MIAPPE (Minimum Information about a Plant Phenotyping Experiment;
Papoutsoglou et al. 2020) have addressed these aspects in a more targeted way.

Acknowledging and rewarding thosewho generate data would go a longway towards encouraging effective data sharing.
One approach to this issue is exemplified by the Annotated Crop Image Database, which is set up to show only fragments
of annotated images of plant phenotypes, without necessarily showing the detailed metadata that would allow others
to re-use those images for biological research.6 This encourages biologists to share their data as early as possible to
support the development ofmethods such as feature detection, while at the same time protecting those data from re-use by
other biologists for as long as it is needed for the original data producers to publish their own results. This is only one
among many possible solutions to adequate acknowledgement of data sourcing, with other approaches favoring early
data publication (for instance in data journals) as away to reward data producers while also fast-tracking data sharing. The
Research Data Alliance is one among many organizations engaged in developing conventions and methods to reassure
those providing data that their own research and publications will not be adversely affected, such as for instance the
CARE and the TRUST principles (Lin et al 2020).7 It is imperative that such guidance is visibly implemented and that
researchers are trained to understand its significance for their own work and data management strategies.

3.2 Selecting and digitising data
Given thewide variety of data types, formats and sources in the plant sciences, determiningwhich data resources could be
selected for AI-informed analysis constitutes a serious challenge. Are there data sets of immediate potential if suitably
curated, and what metadata is needed to describe data sets so that their suitability for inclusion in a given analysis can be
assessed? The achievement of clear criteria and priorities for data selection is a crucial issue given the considerable
amount of work required to digitise, curate and process datasets and related metadata. Such criteria should consider the
ML task at hand, the scientific goals as well as the concerns of individuals and groups holding the data.

Consider herbarium specimens as a promising potential substrate for ML. Collectively, the world’s herbaria contain
an estimated 392,353,689 plant specimens as of December 2019 (Thiers 2020), associated with metadata describing
the place and time of their collection. ML can be used to infer useful information from the physical and molecular
characteristics of the specimens to support automatic identification of plants (Carranza-Rojas et al. 2017), or to
find material with potentially useful traits (Younis et al. 2018). Recent efforts have combined specimen images, their
associated metadata including descriptive labelling, and associated field images (Carranza-Rojas et al. 2017). These
approaches could be used to monitor ex situ conservation efforts, to track changes in natural and farmed distribution of
species in response to environmental changes, to trace the spread of invasive weeds, or many other applications not
strictly related to crop research. However, many herbaria are only partially digitised, if at all. Most specimens have not
been imaged or subject tomolecular analysis, and even basicmetadata is often not databased, but only exists in the formof
hand-written or typed annotations attached to the physical specimen,meaning that even taking an inventory of stock is not
possible, and access to the material is only possible via physical visit. Thus, while the new technologies of imaging,
molecular analysis and ML have created new possibilities to exploit these historic collections (Soltis 2017), these will
remain unrealised until the information they contain is extracted, digitised, and made publicly available, tasks which are
very labour-intensive. Interestingly, ML itself may be able to help solve this problem: the transcription of physical
herbarium labels may be supported by the use of ML to interpret handwriting. A useful step towards this is the recent
production of a benchmark dataset of transcribed herbarium labels (Dillen et al. 2019), which could be used to assess the
performance of algorithms. This does not however help to address questions of data selection. Researchers still need to
decide which specimen and related data/metadata to prioritise given limited resources and the vast scale of existing
collections. In turn, the selection of usable and relevant data and digitisation of records is tightly associated with the
prioritization of research problems and questions on which to work. There is relatively little investment in improving
procedures and methods in this area, and yet there is a need for processes through which researchers explicitly consider
and debate which data should take precedence and why.Without such processes, the ensemble of data being curated risks

5https://urgi.versailles.inrae.fr/faidare/.
6https://plantimages.nottingham.ac.uk/.
7https://www.gida-global.org/care#.
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being patchy and fragmentary, the random result of individual efforts by separate and uncoordinated projects rather than
of a community effort to locate and invest on data of most relevance to all. Indeed, without such processes, pressure to use
automatic methods, and to be seen using them, can aggravate the problem with researchers investing resources in the
creation of large datasets without considering whether and how those data could be used.

3.3 Linking data to material samples
Clear reporting on the relation between digital data and material samples – the seeds, germplasm and other biological
sources to which data are associated - is vital to the interpretation, re-use and reproducibility of results (Leonelli 2016,
Strasser 2019), as well as constituting a major source for data in the first place (Bebber et al. 2012). Moreover, the use of
plant science to inform agriculture and related domains such as forestry is predicated on understanding and utilizing the
widest possible range of biological variation between and within species. For example, crop breeding is dependent on
having access to a large pool of traits that can be incorporated in new varieties that are resistant to changing climates,
diseases and stresses (Hufford et al. 2019). Applications ofAI to plant and related datamust be designed in such away that
data, models and other outputs can be linked back to the material samples on which scientific research and biotechno-
logical applications depend.

This has proved to be problematic. While a vast number of accessions of crops and crop wild relatives are held in
genebanks worldwide, the corresponding data records for this global resource are often limited at both a scientific and
operational level. Some progress has been made in promoting data deposition and thereby indexing of resources in
overarching international plant genetic diversity databases such as EURISCO, which provides information about more
than 2 million accessions of crop plants and their wild relatives, preserved ex situ by almost 400 institutes including both
passport data and phenotypic data.8 However, meeting the disparate needs of users, donors, funders and other
stakeholders in such indexing databases remains difficult. Within the international phenotyping community, information
systems are developing which require all objects, including individual plants, to be allocated a persistent URI (Neveu
et al. 2019). This increase in specificity has the potential to increase connectivity between phenomic data and the samples
from which it was obtained, but comes with a significant overhead cost and to date is only feasible in indoor, highly
mechanised environments.

Legacy systems do not always lend themselves to easy integration and canmake consistent matching of appropriate terms
and datatypes between originating resources difficult. There can be competing arguments for the most appropriate,
efficient, or scientifically accurate representation or classification of data and characteristics to meet perceived audiences.
A reluctance or inability to re-invent domain specific resource catalogues is also understandable given the range of
operational concerns that inform themanagement of live resources. Genebank databases have been iteratively customised
to user requirements and/or contractual constraints over a period of many decades. There may be significant conflicts
between visibility and dissemination drivers for commercial and public collections and even for separately donated
materials within those resources. There may also be concerns about third party use of collated data or perceived
availability of materials, particularly where there may be implicit or implied intellectual property, or regulatory
compliance benchmarks for benefit sharing obligations. A precautionary principle not to include portions of the biobank
collection may also apply when downstream use of data or implied ownership of downstream discovered characteristics
are considered by the biobank review panel considering inclusion in such an external index.

Within plant phenotyping facilities, the legacy problem arises from the historic variations in metadata collection. In
particular, useful linkage of phenomic data to samples requires details of the growth environment to also be collected.
This is now attracting significant interest, and methods and standards for e.g. illumination conditions are emerging
(Cabrera-Bosquet et al. 2016). Inclusion in some databases is now conditional on capture of specified levels of
environmental information. Legacy data, however, often lack such information, and the variations in plant structure
and performance introduced by environmental conditions - evenwithin well-controlled environments - means that simple
linking of genotype to phenotype is insufficient.

Between them, these issues can make reduce data donation to a lowest common denominator of permitted and
approximated metadata overlap for a subset of holdings – often a simple index or indicator of materials which merely
points to the originating collection and may not permit broader aggregation of recorded characteristics. This can be
insufficient for useful exploitation of the resource by specialist researchers and will often render an aggregation site
unpopular or secondary to the primary biobanks. The problem is even further exacerbated when considering the very
large number of valuable land races, crop wild relatives (CWRs) and heritage varieties preserved in-situ at herbaria,
botanical gardens and conservation sites. Moreover, and despite significant work invested in creating genotyping panels

8https://eurisco.ipk-gatersleben.de/.
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and populations for many different species, a lack of phenotypic data about accessions has limited the utilisation of this
diversity and constrained understanding of the genetics of complex traits, leading to a phenomics “bottleneck” (Araus &
Cairns 2013). An increasing number of high-throughput phenotyping platforms are being constructed, in which large
quantities of data about individual plants are collected, integrated and analysedwith the help ofML techniques (especially
on multispectral and RGB imaging data). These phenotyping platforms are at the forefront of materials-data linkage and
biodiversity studies in plant science, and yet they are often unavailable beyond the institute or research group that
developed them, for reasons ranging from data size to commercial protections.

The challenges of managing the relationship to material samples are not limited to datasets, but also include models. The
accuracy of Genomic Selection (see Box 1) for a given breeding population is strongly dependent on genotypic and
phenotypic data collected from closely related populations, which are used to train models (Spindel & McCouch 2016).
Robust linkage between models and the material samples for which they have been optimised, combined with pedigree
data and made available via public infrastructures, will be important to enhance the accuracy and utility of GS modelling
through greater transparency, comparison and reuse of models for related breedingmaterials or traits. Thus, the usefulness
of AI-informed analysis of digital data is tied to investments in the development and maintenance of material samples -
including those kept in seed banks and herbaria - and key germplasm metadata such as those captured by the Multi-Crop
Passport Descriptors (Alercia et al. 2015).

3.4 Standardising data and metadata
Standards ensure that data are collected in formats and with labels that can be understood by users, whether human or
machine, as well as ensuring that a necessary minimum of contextual information (or metadata) is recorded about the
methods through which data were generated and the environmental and experimental conditions in which they were
acquired. Providing metadata labels and labelling/annotating individual data points with semantic standards both present
major challenges for the use ofML andAI, although these challenges can differ in nature (the type and choice of standards
required) and scale (labelling data points requires substantially more labour than assembling appropriate metadata).
Nevertheless, many of the key issues of how to develop appropriate standards for labelling that fulfil the needs of different
user communities and are widely adopted by those communities are shared between the two areas, and are increasingly
approached through coordinated effort.

Consider this example of a dataset from orchard management. A two-year study of 19 orchards in New York state
collected data on the effects of conventional pesticide use on the wild bee community visiting apple (Malus domestica)
within a gradient of percentage natural area in the landscape (Park et al. 2015). ML techniques, such as hidden Markov
models, can effectively be used to model the behaviour of pollinators based on movement data, especially between
orchards and natural habitats. This in turn could inform decision support tools for scheduling the use of pesticides to limit
their effect on pollinators, using data collected from individual trees by remote sensing technology. However, the dataset
presents several issues for reuse. Each orchard was going to be visited twice for data collection, once before and once after
blossoming, but the first year some data were not collected due to cancelled visits. While this was not a problem for this
study, where the focus was on the bee count in the second year, for a study with a different objective the incomplete data
could be problematic. Moreover, dates are annotated relative to bloom rather than to calendar dates; and a key variable is
the Bee Impact Quotient (BIQ) for each individual pesticide, and other scores derived from these. These measures are
appropriate for a study on pollinators, but may be less suitable for a study measuring different impacts on the ecosystem,
such as plants or biodiversity. Without a preliminary discussion of standards for future data reuse at the start of the study,
and incentives to ensure that the scientists involved are given credit for developing data resources of wider interest than
for their own project, such considerations are not taken into account, and data collection cannot yield standardised,
machine-readable labels for individual data points that can be aggregated and reused within other projects.

To counter such issues and help researchers to signpost more clearly the characteristics and expected utility of datasets,
there has been considerable progress in developing semantic standards for data and metadata by a variety of transnational
organisations and initiatives. For phenomic research, such efforts include the Ontologies community of practice of the
CGIAR (Arnaud et al. 2020), which manages the Crop Ontology, and the Food and Agriculture Organization’s
AGROVOC thesaurus. Distinctive to both initiatives is not only the standardisation of terms for field studies, but also
the attempt to develop terminologies that bridge the expertise of the multiple stakeholders in agricultural field trials,
including farmers, breeders and scientists, and link different languages.9 Initiatives such as ELIXIR, the Research Data
Alliance Agricultural Data Interest Group, GODAN and the project PHENOME-EMPHASIS provide precious

9Semantic standards that recognise and incorporate this diversity of knowledge will be a necessary bedrock for any applications of AI and ML
that are envisioned to work for diverse user bases, and to preventing implicit bias towards the terminology, scope or aims of dominant research
groups (Arnaud et al. 2020).
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collaborative venues to improve plant data standards beyond molecular omics and experiments. Notable concrete
examples include projects such as the Breeding API (BrAPI; Selby et al. 2019) and MIAPPE (Minimum Information
about a Plant Phenotyping Experiment; Papoutsoglou et al. 2020), the latter fostered by ELIXIR as a way to improve
consensus on ways to annotate data generated by phenotypic experiments; the Working Group on Integrating Genomic
and Phenotypic Data for Crop and Forest Plants coordinated by ELIXIR-EXCELERATE10; and the efforts to standardise
the collection and interoperability of field data in the CGIAR’s AgroFIMS, the open-source FieldBook application (Rife
& Poland 2014) and the Grassroots information infrastructure of the BBSRC Designing Future Wheat programme.
Efforts such as the COPO platform also implement semantic standards, including MIAPPE, in user interfaces to aid data
brokering which underpins the availability of well-described datasets that can in turn power AI/ML studies (Shaw et al.,
2020).

These initiatives, and a shift in research culture more generally, are playing a central role in establishing wider attention to
and use of best practice in standards to deliver impact through AI/ML (cf. Leonelli et al. 2017). Ensuring that these
standards are not implemented retrospectively, but rather they are adopted before data are actually produced, remains a
key challenge. In this respect, companies that develop scientific instruments and research software have a crucial role to
play. This is particularly evident in the case of data generated by remote sensing technologies, where the most prominent
standards concern the technical levels of imaging and data processing rather than data curation. For example, a recent
study of the impact of oil palm plantation in Indonesia based on a range of sources of satellite imagery attempted to assess
the impact that historical changes in land use had on greenhouse gas emissions (van Beijma et al. 2018). An outcome of
the studywas that comparing the outputs from different remote sensing sourceswas severely compromised not because of
any challenges of changes to satellite technology but rather because there was no consistency in the classification of land
use between the different remote sensing campaigns.

3.5 Evaluating the quality of reference data
Developing reliable ML tools is dependent on having adequate reference data (also referred to as ground-truth or training
data) for model validation. Obtaining or accessing reference data for complex field environments poses a distinct
challenge, due to the scale of data collection required and the associated problem that the high value of such data means
that it is frequently held behind restrictions on access or licensing agreements (see section 3.7). Purpose-built platforms
such as Rothamsted Research’s NorthWyke Farm Platform allow the monitoring and control of multiple agricultural and
environmental variables, from plant growth through soil health and water flows, generating detailed, multi-scalar data
(Orr et al. 2016). Such facilities are expensive and few, however.

Given that the generation of new data specifically for the purpose of training and benchmarking can be expensive and
time-consuming, re-using already published data for these purposes is desirable. Implementing good data and metadata
standards can reduce the cost and time of reuse, but standardisation alone does not allow the creation of benchmark
datasets on demand. The utility and accuracy of algorithms is dependent on the quality of the datasets used to train
them. Without sufficiently broad and unbiased training sets, algorithms will not have wide general applicability. It is
therefore necessary to address statistical aspects of data sets in addition to the data management and stewardship
principles described in the previous section. Data quality benchmarking has played a central role for example in
genomics, with projects such as the MAQC/SEQC (SEQC/MAQC III Consortium 2014), the MicroArray/Sequencing
Quality Control initiative by the FDA, but quality standards also depend on the potential implications of decisions
taken based on the information contained in the data. For example, the evaluation of ecological risks associated with
GM crops or pesticide use need to happen based on more robust data than those procured via fundamental research.
While published data sets such as those in genomics repositories, citizen science platforms or ecological data banks
typically have undergone some quality checks, these are tailored to the requirements of the original context of the
data collection. Re-using data sets to develop an algorithm serving a changed purpose requires a fresh assessment of
the suitability and quality of the data set. The following questions can provide guidance for finding out whether
representativeness and resolution requirements are fit for the specific context and purpose of the algorithm that is being
trained with the data.

1. Are the variables used by the algorithm (or sufficiently close surrogates) included in the data set? Are the
measurement methods sufficiently accurate and precise for this purpose? Have they been taken on a sufficiently
elementary unit rather than on an aggregated level only? If the data collection covers a time period, have the
measurements been taken sufficiently frequently?

10https://elixir-europe.org/about-us/how-funded/eu-projects/excelerate/wp7.
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2. Are the records complete? If not, are records simply missing at random or are there any patterns in the absence
that might skew the results obtained by the algorithm?

3. Is the sampling method used to collect the data subject to any selection biases that were negligible for the
conclusions of the original study, but could impact the results or interpretation of the algorithm?

4. Where data has been gathered from human experts (e.g. in image annotation for phenotyping), has subjective
bias been identified? Is the set of experts used sufficient to capture possibly conflicting views? Have the
annotators understood and been provided with appropriate tools for the task?

One example to illustrate quality issues in data reuse concerns the British Farm Scale Evaluations (FSE), which analysed
the effect of genetically modified herbicide-tolerant varieties of beet, oilseed rape and maize and that of comparable
conventional varieties on the abundance and diversity of arable plants and invertebrates (Firbank et al. 2003).11 The data
set consists of complex time courses reliant on farmers’ assessments.While measurement of weed cover, crop cover, crop
height and pollinators followed protocols, the schedule for taking the measurements throughout the year was chosen by
the individual land managers, which made comparisons difficult. It was pointed out that: extra data assessing "whether
there is evidence of biodiversity harm from the use of the GM crop and herbicide regime" should have been collected
(Environmental Audit Committee 2004); no definitive yield component had been included, whichmakes it difficult to use
this data set for trade-offs between environmental and economic targets; and pesticide data is given as product application
rates, which makes interpretation of these numbers difficult for future studies. Another major issue is missing data due to
vandalism, a foot and mouth disease outbreak and unknown reasons, in some cases showing systematic patterns of
incompleteness.

Indeed, a related issue is the breadth of data used to train models: whether they sufficiently represent the variation and
diversity of target species or populations. Use of computer-generated images of plants in order to enlarge the image
datasets used to train deep learning computer vision algorithms for phenotyping is increasingly common (e.g. Ubbens
et al. 2018; Humphreys et al. 2018; Toda et al. 2020; Atanbori et al. 2020).Whether or not suchmethods could feasibly be
used to generate training data that sufficiently reflected the complexity of field environments is another question. The
expansion of field phenotyping, including attempts to capture, integrate and analyse imaging captured by drones and
other sensing technologies, is likely to be necessary for this task. Progress in the latter area is rapid, although it is still
constrained by the expensive and technically challenging nature of both experiments and associated data annotation
practices (Fahlgren et al. 2015; Coppens et al. 2017; Rosenqvist et al. 2019).

3.6 Using software and models across scales, species and environments
When developing effective AI solutions in plant-related research, access to adequate software andmodelling platforms is
as necessary as access to high-quality data. Software and models need to be implemented on digital environments that its
users have access to or are willing to pay for. Accessibility, especially for large-scale AI, is key: researchers need access to
the computing and data platforms needed to power AI at a reasonable price, in order for such research to be scalable.
Where possible, software should also be portable for use across digital environments, so as to accommodate researchers
working in different systems; and it should be approachable by users with a range of experience in handling and
analysing data.

A key obstacle here is the fact that researchers who can formulate the biological problems are often not those developing
ML algorithms. An example is the use of targeted software to explore existing data in search for new targets for
experimental investigation. The KnetMiner resource for instance assembles a suite of software and data integration
methods aimed at sifting through the biological literature and public data resources to explore relationships between
datasets and species, especially in cases where multiple traits are connected to multiple genes. The application of these
exploratory methods to key crops such as wheat, sorghum and sugarcane has already resulted in the identification and
further study of important agronomic traits (Hassani-Pak et al. 2020). At the same time, it requires expert tailoring
whenever targeting a new species, including biologically informed assessment of which datasets used for key crops can
be applied to other crops. Indeed, not all models will work directly off the shelf on a new dataset/problem. Giuffrida et al.
(2019) devised an algorithm that adapts a leaf counting model on new data without requiring annotations and without
requiring the availability of the original training dataset. As model complexity increases, however, so does the opacity of
the models. Dobrescu et al. (2019) sought to develop mechanisms that help peek into what ML models learn in tasks of

11The datasets are published by CEH as a collection here https://catalogue.ceh.ac.uk/documents/876358e4-62f7-4386-99e1-7d3eac223e03.
Each crop dataset has its own DOI and the metadata gives a summary of measurements/data available, plus an extra dataset for
management data.
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object counting (and in particular leaves) – part of a growing research field which promises to make CNNmethods better
understood, increasing trust in the insights they provide.

It is then not enough to provide researchers with software alone. Rather, this must be supported with workflows that
incorporate the whole life cycle of data preparation, validation and analysis, and which can be operationalised with
minimal friction (Bechhofer et al. 2010). Algorithms and data models must also be articulated at the right level of
abstraction, to resolve what could be perceived as a new form of ‘translation gap’ between the cutting edge of data science
and the frontiers of plant research. Software andmodels created for very particular uses will have higher requirements for
data quality and annotation, creating a barrier to reuse (Tiwari et al. 2020; Stanford et al. 2015). Some models need to be
flexible enough to work across the multiple scales that characterise both biological work in general and agricultural
research in particular, including between species and between different environments. An example is the John Innes
Centre’s work to create data resources with the appropriate software that enable the transfer of learning from model
organisms (e.g. Arabidopsis) to non-model organisms (e.g. Brassica crops) (Jones et al. 2018, 2020; Calderwood et al.
2020a, 2020b).12 Many crops have large complex polyploid genomes, one of many factors that can make the direct
transfer of knowledge problematic. Machine learning approaches are being developed that allow for large transcriptomic
and phenotypic datasets being collected frommany individuals, populations and species. This in turn can be exploited to
identify similarities and differences in the regulation of developmental transitions in response to environmental stimuli
(Calderwood et al. 2020a, 2020b). Bringing foundational plant science into the crop space is crucial, yet key challenges
remain at every level from gene activity and function through networks, tissue behaviour and plant physiology to field-
level behaviour.

The need to operate across multiple scales has long been acknowledged to require trade-offs between accuracy and
generality (Levins 1966). Indeed,mostmodels are designed to address specific questions andwill not be applicable across
scales. This raises questions around whether and how the results of such modelling efforts can be linked and integrated.
The goal of ML is not to ensure how the model will do on the training data but instead how it will perform on a testing set.
The testing set is used to ascertain how well the model will generalise to an unseen data source and thus “in the wild”.
After all, we do care about creating AI/ML that will generalise well either in unseen data or unseen tasks. For example,
howwill a model that is trained to count plant leaves performwhen tasked to count leaves in different images of the same
plant family (different illumination), or a different plant family or even a different task (e.g. seed counting)? The ability for
models to generalise is largely governed by the quality of the internal data representations the model has learned to fulfil
the task. If one relies on supervised machine learning, then these representations will be tuned to the specific task and will
have difficulty in generalising. Here multi-task and meta-learning can help as they tend to learn representations that can
more easily generalise (Dobrescu et al. 2020).

However, if we rely on annotations to drive this supervised learning of data representations, onemust readily ask whether
data quality and annotation play a key role. In ML, data cleaning and preparation take a considerable amount of time.
Even more time consuming is annotation/labelling of individual data points. Approaches to relieve the data annotation
effort include semi-supervised, self-supervised and multi-task learning. These methods aim to learn representations by
leveraging unlabelled data, or correlations and self-similarity of the data themselves, or correlations between tasks.
Considerable and notable improvements have been made outside and within plant sciences, and particularly in image-
based phenotyping. Yet even these methods rely on some annotations. Thus, one must consider whether noise (errors) in
annotation have an effect. Learning with label noise, as it is colloquially known inML, is a mathematical framework that
aims to learn a good model even when labels may be noisy, i.e. have errors (Natarajan et al. 2013). Recently, Giuffrida
et al. (2018) went to the extreme of assessing such levels of noise amongst expert and even novice annotators (citizen
scientists). The findings are promising: Despite the presence of noise, as long as multiple annotations of the same datum
by diverse individuals exist, models can be learned.

One must consider errors in annotation not only in providing data and metadata labels for the datasets to which ML
is applied, but also in how ML outputs will be used to support statistical hypotheses. In this aspect, an error in labelling
the metadata of a mutant as control will create considerable propagation of error in the pipeline. Thus consistent records
of experimental conditions will help ensure that such errors are minimised. Here ML can also help identify errors
(Schramowski et al. 2020). AnML algorithm can actually act as a calibration method: outputs of anMLmodel which are
suddenly inconsistent point to data inputs that are out of distribution. Whether such out of distribution data are due to
errors in the data or metadata or because theML is encountering data not trained with (but could be updated), necessitates
human intervention and this in turn creates a viable checkpoint in the development of robust data processing pipelines.

12http://order.jic.ac.uk.
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3.7 Managing data access responsibly
Access to appropriate datasets is necessary for the application of AI tools to complex environmental and biological
research topics, yet it clearly depends on factors well beyond scientific need, including intellectual property regimes,
data governance by specific institutions, and consideration of the rights and risks involved in data sharing for those who
produce the materials from which data are extracted and/or may suffer the social and economic consequences of specific
applications of data analysis (Williamson & Leonelli 2022). Legal constraints such as intellectual property controls
and licensing regimes can and often do put the data beyond the financial means of lower-resourced researchers
and institutions, or place restrictions on the use of the data that makes the kind of wide-ranging data mining required
for AI application difficult if not impossible to implement (Jefferson et al. 2015). Given the distinctive landscape of
intellectual property rights, contracts and the need to find incentives for data sharing that respond to imperatives of
commercial competition, finding ways to make data usable to a range of actors without necessarily sharing it is likely to
become increasingly important. In biomedicine, initiatives such as DataSHIELD have been developed in which users are
able to run analyses on a dataset via an intermediary platform without having direct access to the source data (Murtagh
et al. 2012). Such efforts allow the anonymisation of data and removal of patient/volunteer personal information, which
are recognised as important issues in biomedical research. Similar initiatives such as the Open Algorithms (OPAL)
project, developed in relation to commercially sensitive data (Roca & Letouze 2016), have recently been promoted in
agricultural research forums such as the CGIAR Big Data in Agriculture Convention, but their uptake remains to be
determined.

Research institutions including universities have often kept data from widespread access, with even data produced by
publicly funded studies remaining either unknown or inaccessible to other researchers. This is partly explained by lack of
investment in the platforms, curation expertise and training required to ensure data sharing and facilitate analysis, and
partly due to enduring confusion around legal accountability of research institutions vis-a-vis the requirements of
governments, data protection laws, private sponsors (including public-private-partnerships) and public funders - not to
speak of the fact that researchers often operate within international networks where different national legislation and
expectations may apply.

Data access must also be balanced against ethical concerns that have recently arisen around the re-use of data and
materials collected in low-income countries and/or low-resourced research environments. With reference to the longer
history of colonial exploitation of indigenous agricultural knowledge to support market-driven growth in the Global
North (e.g. Carney 2001), international institutions including the World Data Systems, CODATA and the CGIAR have
pointed to the potential for indiscriminate data access to accelerate so-called “digital feudalism”; the exploitation of more
vulnerablemembers of the agricultural research network by better-resourced andmore powerful actors (such asAlphabet/
Google) who can effectively appropriate such data. The opportunities afforded by AI, while holding the potential to
benefit many stakeholders, also create new commercial incentives for such exploitation.

Key areas for negotiation include access and benefit sharing agreements and the protection of sensitive data, for
example where they include location or certain kinds of farm production data. In the biomedical field, strong regimes
of governance and ethics have been developed for data protection and legislating the acceptable uses of data (Hilgartner
2017), and these may provide a model for the plant sciences. However, plant data poses several different challenges to
human biomedical data, notably the fact that much of the data utilised in basic and translational plant research does not
come under the more protected category of personal data, but is frequently covered instead by contract law (Wiseman
et al. 2018).

3.8 Engaging experts beyond one’s domain
Despite the increased use of ML expertise and tools and the example set by some highly visible projects, collaboration
between cutting-edge data science research groups and plant science communities is not yet commonplace (Henkhaus
et al. 2020; Department of Energy 2020). On the one hand, this is due to the poor visibility of plant science datasets
and problems to the data science community, in comparison to more prominent biomedical or environmental data and
challenges. On the other hand, plant researchers need a better understanding of how algorithms work and what can
legitimately be expected from the outputs of AI and ML. It is necessary to up-skill researchers with expertise about the
available types and minimum necessary semantic annotations that datasets must be labelled with in order to make them
machine-readable, in the first instance, and usable with specific algorithms. Providing researchers in the plant sciences
with aminimum fundamental knowledge about suchmatters, preferably from an early stage in their careers, will facilitate
the deployment of AI in the field and assisting decision-making around the issues of data selection and management
described above, while also acting as an incentive towards the implementations of standards in the production and use of
plant data.
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One example of combining community-wide incentives with collaboration and upskilling are the “data challenges”
organised in conjunction with the Computer Vision Problems in Plant Phenotyping (CVPPP) workshops, held at various
international computer vision conferences since 2014. The first challenges were built around a curated dataset of
images of rosette plants, including Arabidopsis and tobacco, taken in a controlled experimental setting, that could be
used to test algorithms for leaf detection, segmentation and counting. This dataset, provided with expert annotation and
full metadata, was presented alongside clear problem statements for computer vision researchers to work with and scripts
for preprocessing and to code performance metrics, thereby minimising the costs of engagement. Phenotyping problems
were mapped onto appropriate computer vision terminology, for example leaf segmentation to multi-instance segmen-
tation, and the workshops were organised to facilitate research likely to lead to publications for participants. These
efforts resulted in wider visibility of the Arabidopsis dataset among the CV community as an important benchmark in
the development of multi-instance segmentation and object counting tools (Tsaftaris & Sharr 2019); educated ML
researchers in the potential of plant data; and highlighted the potential of computer vision (andAI tools more generally) in
addressing long-standing plant research questions.13 At the same time, this example highlights the significant effort
involved in developing closer collaboration between these two research communities, since presenting the dataset
required extensive preparation by the organisers (who needed an understanding of both areas of work to effectively set up
the challenge). In addition to supporting access and use of specific software, hardware and workflows, there are benefits
to be gained from supporting engagement with tools around which a community has developed, particularly when the
users may lack technical background in ML/software engineering. Access to other users’ experiences and opinions is
likely to be very valuable here, whether it is informal or through training material and events.

It is crucial to extend this engagement beyond the sphere of professional scientists to include other stakeholders in
food systems, including farmers, agronomy advisors, plant breeders, food manufacturers and suppliers, nutritionists and
others. Without dialogue with and among stakeholders, it is hard to identify the priority areas — the social-scientific
needs and challenges — where there is greatest opportunity for AI applications to achieve impact. Mapping the
stakeholder networks for specific forms of data-intensive plant research is a labour-intensive but important endeavour
(The Open Research Data Taskforce 2018), as demonstrated in large projects such as Elixir that devoted significant
efforts towards developing transparent and robust mapping services. Government representatives, funding agencies and
industrial partners need to be engaged in the development of any data infrastructures and services. The involvement of
industrial partners in particular is crucial given their ownership of key data resources, and also for their use of the tools and
applications of their outputs. There is strong need for increased governance and related norms ensuring the delivery of
public goods from those organisations that see data as a key part of their commercial activities - similarly to what the Food
and Agriculture Organisation has been spearheading in the case of plant genetic resources. If the field is to provide
advantages to a wider range of socio-economic actors, SMEs also need to be represented in future discussions and
governance strategies around data access and protections. In developing its Agri-tech strategy,14 the UK government
identified the key role of data and placed the development of an Agri-tech centre dedicated to data integration and access
(Agrimetrics)15 as central to its wider development of centres of agricultural innovation.16 Such collaboration has also
been envisioned, for instance, in the work of the Agrisemantics working group within the Agricultural Data Interest
Group of the RDA17 and the CGIAR Communities of Practice bringing together stakeholders to discuss data standards
and semantics (Arnaud et al. 2020). This engagement is crucial to ensure that academic expertise is informing and
contributing to food security on the ground. Equally important is for public academic research, typically targeted to a
wider range of topics, crops and applications, to be directed towards stakeholder needs. For instance, PlantVillage Nuru, a
free smartphone app that uses automated image analysis and recognition with a phone camera for immediate disease
diagnosis in several other crop species (Ramcharan et al. 2019), is targeted at farmers in the developing world and was
specifically designed, in consultation with farmers’ representatives, to be usable offline and with minimal external input.
This resulted in wide uptake and positive feedback due to the accessibility of the app to farmers and the usefulness of its
contents and design.

4. Conclusion: what data landscape do we need for plant-related AI?
We have reviewed eight data challenges that need to be urgently confronted in order to support the application of AI and
ML tools to plant-related research (see Table 1). With specific reference to the UK and Europe, where our work is based,
we discussed examples of good practice, including efforts to articulate data standards, algorithms and models at the right
level of abstraction, in order to fit existing research questions and also address the gaps separating cutting edge data

13Another successful initiative by the CVPPP is the Global Wheat Detection Kaggle Competition launched to broaden engagement in summer
2020, which received over 2000 entries (https://www.kaggle.com/c/global-wheat-detection).
14https://www.gov.uk/government/collections/agricultural-technologies-agri-tech-strategy.
15https://agrimetrics.co.uk/.
16https://www.agritechcentres.com/.
17See e.g. https://www.rd-alliance.org/system/files/documents/SEMANTICS-RICE_poster_LD.jpg.
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science from the frontiers of plant research. Building on such examples, we pointed to the need for a more systemic
change in how research in this domain is conducted, incentivised, supported and regulated. We highlighted the
importance of developing data services aiming to make data available and usable to people. This is particularly important
in relation to environmental data of relevance to plant research, on which there has been much less focus compared to the
tools already present to cope with genomic data. We pointed to the need for substantive investment in the development
and maintenance of data infrastructures, standards and software, as well as: venues and training programmes aimed at
fostering collaboration among the diverse expertise required (and especially exposure to data science for plant scientists
and breeders); the identification of relevant stakeholders including industry, governmental agencies, local breeders and
indigenous communities as relevant; and substantive engagement with those stakeholders. We stressed the difficulties in
implementing these approaches within the highly fragmented biological data landscape, and the even more complex
ensemble of public and private sponsors involved in research on crops. Despite marked advances in data availability,
infrastructures and analytics, many plant researchers remain unaware of the extent to which AI tools could support their
work, and do not actively participate in the effort to produce reliable data for the community.

One way to shift incentives and support a substantive culture change among researchers could be to foster international
and transdisciplinary collaboration around big projects with clear use cases - a “moonshot” equivalent to the Human
Genome Project or the search for the Higgs particle in physics. Big science of this kind has a strong track record in driving
the development of standards and epistemic cultures, as well as bringing together international partners to maximize the
strengths of different regions and approaches (Leonelli & Ankeny 2015). The agronomic domain may need one such big
project to create traction and new forms of collaboration, especially given the importance of driving adoption of common
standards across as diverse research communities as those of data scientists working on algorithms, molecular biologists
focused on genetic engineering and crop scientists engaged in field experiments. Targets for such a moonshot project
could be: addressing the phosphate crisis and its impact on agricultural yield; developing a fully digital farmmodelling an
existing experimental station; or the development of ecosystem services using multiple metrics.

An alternative approach would be to focus on a key feature of ML that has been lacking in previously dominant
technologies: its ability to both generalise and transfer between domains, once specific, targeted solutions are found
to well-defined problems. Once a machine learning strategy has been identified for a given task exposure to further
examples of that task typically improves performance, sometimes even when the details and environment are signifi-
cantly different. Rather than identify a moonshot biological challenge, which runs the risk of creating more tools tuned to
specific research questions, an explicit search for capabilities needed across a range of plant and agricultural science
scenarios could inform the identification of Technological GrandChallenges facing this community. These could be used
both to spread innovation across the community and to engage colleagues from other disciplines. This approach could
learn from other areas of research who have fared better in the development and application of AI, such as biomedicine.
Repurposing some of the insights and infrastructures created in that domain would also be very useful for plant-focused
science, including in tackling ethical and governance issues associated with the protection, sharing and reuse of
plant data.

Any future strategy for the development and application of AI in plant-focused research will need to have data curation at
its centre, rather than as an afterthought. Making plant data FAIR is crucial. This in turn requires both technical work on
standards, reference data, software and modelling, and organisational work towards establishing norms and venues for
appropriate data governance (including on the terms of ownership, access to and reuse of data) aswell as engagement with
the widest possible spectrum of relevant stakeholders. Most importantly, it requires collaboration towards tailoring the
technologies to the challenges posed by the green domain and the role of plants in relation to food systems and
environmental sustainability. The opportunities immediately available in terms of AI applications may not necessarily
be what plant research and agronomy need. There is a need to foster collaboration between fundamental researchers, data
scientists, algorithm developers and end users in order to identify and maximise opportunities in this domain. Notably,
while overcoming challenges to the effective use of AI will require changing practices and networks, it is important that
such changes should not detrimentally affect what has already been successful. Existing communities of practice (such as
the ELIXIR plant science community in Europe and the RDA agriculture-related groups at the global level) provide
valuable sources of expertise and collaboration, and disrupting these risks creating more obstacles to good practice than
benefits. We should note that making data FAIR along these lines will not resolve all issues of comparability and
interoperability across experiments, given the enormous variability in settings and the number of variables involved - all
of which are regularly updated to reflect local conditions. Carrying out a meta-analysis of data across experiments using
AI will thus always require calibration and adjustments to allow for the specific sites, purposes and conditions of the
study.

Last but not least, improvements in data management may help identify and account for ethical and societal issues of
relevance to agronomy and food production. There has been widespread concern that the adoption of ML tools implies
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a decrease in the oversight and control retained by humans on the interpretation of results, including the assessment
of the potential implications of any resulting actions for stakeholder communities such as farmers, breeders and
consumers. This has been flanked by worry around documenting the provenance of data and rewarding the efforts
involved in generating the materials and conditions for data collection, especially where results are extracted from
farming communities in deprived areas. Practical solutions to these concerns require concerted effort from data producers
and curators, research institutions, data infrastructures and international governance (see also Williamson & Leonelli
2022). For instance, the impact of specific crop varieties on diverse landscapes is considered by AgroFIMS and other
tools developed by the CGIAR, while the allocation of ownership claims and rewards attached to discovery is
incorporated into the Global Information System (GLIS) of the International Treaty on Plant Genetic Resources for
Food and Agriculture. Thus, data management strategies can help to ensure that the environmental, social and economic
impact of AI tools is built into all applications.

Data availability
No data are associated with this article.
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This opinion article presents a solid overview of the state of the art of AI in plant research and 
provides a comprehensive analysis of current challenges in (and solution for) bringing AI 
approaches in plant research to full fruition. 
 
While each of the identified challenges is to the point, there is considerable overlap between 
them. This could have been avoided to some extent by embedding the discussion of these 
challenges in a clearer analytic framework, instead of by presenting them as more or less 
randomly ordered list. That said, this is a minor shortcoming and I don't think the article requires 
any major restructuring to prove its merits. Thus, I approve of the overall article in its current form 
and have only a few suggestions for minor corrections and further improvements: 
 
First, regarding the current status of the uses of AI in plant research, it would be helpful if the 
authors could expand their brief introduction of ML approaches by elaborating on which of these 
approaches are actually being used in plant research. It looks like the examples they go on to 
describe are all instances of (semi-)supervised learning. Are the other approaches to ML that they 
present also employed in plant science? If so, examples would be welcome. If not, it would be 
useful to signpost the more limited scope of AI approaches in plant science. Relatedly, I was 
slightly puzzled by the characterization of supervised learning as ‘a priori’ and of unsupervised 
learning as ‘inductive’. Both approaches are often considered inductive, and it is unclear why 
supervised learning should count as ‘a priori’. A final note on this point is that a reference to more 
recent literature (>1997) on ML would be appropriate here. 
 
Another suggestion for improvement concerns the relation between Table 1 and the main text. 
While the table as such provides a very useful summary of the challenges and solutions being 
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discussed, I found that the contents of some of the cells does not adequately reflect the material 
from the main text. The characterization of challenge #5 in the ‘data challenges’ column is a case 
in point. In the table, this challenge is labeled “Access to computing and modeling platforms, and 
related expertise” whereas in the main text the corresponding subsection is entitled “Using 
software and models across scale, species and environment.” Only the first paragraph of this 
subsection discusses questions of accessibility. In the remainder, issues relating to the *use* of 
models across contexts and scales are the focus. This is one of several instances for which there 
appears to be an opportunity to ensure a better fit between the contents of the table and the main 
text. 
 
A further small issue about the table: the meaning of the contents in the “risks” column is 
ambiguous and inconsistent: in some rows, the risks pertain to the data challenge (when left 
unaddressed), whereas in others rows the risks pertain to the proposed solution. This should be 
easy to address, e.g. by introducing a further ‘tradeoffs’ column that lists the risks related to 
implementing the solutions (as opposed to leaving the challenges unaddressed). 
 
Finally, I was puzzled by this remark in the conclusion: “Once a machine learning strategy has 
been identified for a given task exposure to further examples of that task typically improves 
performance, even when the details and environment are significantly different.” This optimistic 
conclusion seemed to me to be somewhat at odds with the main message of the article. Unless we 
construe a ‘task’ in plant science artificially narrowly, it seems that that challenges that have been 
identified and discussed demonstrate that we encounter considerable difficulties in establishing 
reliable performance of ML across research contexts.
 
Is the topic of the opinion article discussed accurately in the context of the current 
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Philosophy of science

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 21 Dec 2022
Sabina Leonelli 
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First, regarding the current status of the uses of AI in plant research, it would be helpful if 
the authors could expand their brief introduction of ML approaches by elaborating on which 
of these approaches are actually being used in plant research. It looks like the examples 
they go on to describe are all instances of (semi-)supervised learning. Are the other 
approaches to ML that they present also employed in plant science? If so, examples would 
be welcome. If not, it would be useful to signpost the more limited scope of AI approaches 
in plant science. Relatedly, I was slightly puzzled by the characterization of supervised 
learning as ‘a priori’ and of unsupervised learning as ‘inductive’. Both approaches are often 
considered inductive, and it is unclear why supervised learning should count as ‘a priori’. A 
final note on this point is that a reference to more recent literature (>1997) on ML would be 
appropriate here.

In response to reviewer 1’s comments, we have included an additional table (Table 2) 
documenting the examples of ML and AI applications discussed in the paper. As part of 
this table, we have also listed the key ML methods associated with those examples.

○

Another suggestion for improvement concerns the relation between Table 1 and the main 
text. While the table as such provides a very useful summary of the challenges and solutions 
being discussed, I found that the contents of some of the cells does not adequately reflect 
the material from the main text. The characterization of challenge #5 in the ‘data challenges’ 
column is a case in point. In the table, this challenge is labeled “Access to computing and 
modeling platforms, and related expertise” whereas in the main text the corresponding 
subsection is entitled “Using software and models across scale, species and environment.” 
Only the first paragraph of this subsection discusses questions of accessibility. In the 
remainder, issues relating to the *use* of models across contexts and scales are the focus. 
This is one of several instances for which there appears to be an opportunity to ensure a 
better fit between the contents of the table and the main text.

Thank you for the useful comment, in some cases (such as that cited) this was a question of 
what we meant by ‘expertise’. We now improved the table to better match the contents of 
the paper.

○

A further small issue about the table: the meaning of the contents in the “risks” column is 
ambiguous and inconsistent: in some rows, the risks pertain to the data challenge (when 
left unaddressed), whereas in others rows the risks pertain to the proposed solution. This 
should be easy to address, e.g. by introducing a further ‘tradeoffs’ column that lists the risks 
related to implementing the solutions (as opposed to leaving the challenges unaddressed).

Agreed and implemented, thank you.○

Finally, I was puzzled by this remark in the conclusion: “Once a machine learning strategy 
has been identified for a given task exposure to further examples of that task typically 
improves performance, even when the details and environment are significantly different.” 
This optimistic conclusion seemed to me to be somewhat at odds with the main message of 
the article. Unless we construe a ‘task’ in plant science artificially narrowly, it seems that that 
challenges that have been identified and discussed demonstrate that we encounter 
considerable difficulties in establishing reliable performance of ML across research 
contexts.

We corrected the sentence and added an additional sentence at the end of this paragraph 
to signal that this kind of success cannot always be expected or generalised. Real 
challenges remain, as identified in this paper, but addressing the challenges as suggested 
here does help to develop effective, targeted uses of ML (what the referee rightly labels a 

○
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‘narrow task’).
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© 2021 Ezer D. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Daphne Ezer  
1 Department of Statistics, University of Warwick, Coventry, UK 
2 Department of Statistics, University of Warwick, Coventry, UK 

This is a good summary of data management and curation challenges in the plant science 
community. Initially, I was a bit skeptical for the need of this article, because the data 
management challenges listed were the same as those that are required across biology and 
across both data analysis AND AI. After reading this more carefully, I do think that this is useful, 
but mostly because of the list and description of excellent examples and case studies across each 
of the challenge areas addressed by the article. 
 
I would recommend that they maybe make a supplementary table of these examples for ease of 
reference.  
 
In addition, I would be a bit careful about the definition of AI. I generally agree, but some people 
have strong feelings that ML and AI are distinct, because ML requires some level of manual 
feature extraction and so may be considered more of a set of statistical method than an "artificial 
intelligence". For instance, it is easy to argue that linear regression is ML, but very few people 
would call that AI. You use HMMs as an example of AI, which I think would be considered quite 
controversial. I would acknowledge that this is an area of controversy, but then stick with the 
definition you've set here. 
 
The biggest area that I think you need to be careful about though is the distinction between 
labelling individual "data points" (such as individual images) and metadata about the overall 
dataset. Metadata about the experimental conditions, species, etc is often easier to come by (and 
already required by many data repositories), but adding labels to enough data points to enable 
supervised learning is an order of magnitude harder. You address this when you talk about 
reliability, but in other places these concepts are slightly conflated.  
 
One issue with data management for AI is that there is often a lot of data collected about a single 
or small amount of observations (one species, one or two experimental conditions, etc). However, 
this kind of thing isn't suitable for machine learning/AI, since AI relies on there being a large 

 
Page 25 of 28

F1000Research 2023, 10:324 Last updated: 27 NOV 2023

https://doi.org/10.5256/f1000research.55447.r95850
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


number of observations.  
 
Another issue is the lack of standardisation of experimental profiles. Even if all the meta-
information were present, it would still be incredibly challenging to extract batch effects from 
experiments across labs, given the number of variables that people are changing. Do the authors 
really believe that making the data FAIR and including metadata would help overcome this 
problem? It seems like doing a meta-analysis of data across labs using AI will always be somewhat 
problematic, even if the data was all FAIR.
 
Is the topic of the opinion article discussed accurately in the context of the current 
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Machine learning in plant biology; transcriptomics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 21 Dec 2022
Sabina Leonelli 

This is a good summary of data management and curation challenges in the plant science 
community. Initially, I was a bit skeptical for the need of this article, because the data 
management challenges listed were the same as those that are required across biology and 
across both data analysis AND AI. After reading this more carefully, I do think that this is 
useful, but mostly because of the list and description of excellent examples and case studies 
across each of the challenge areas addressed by the article. 
 
I would recommend that they maybe make a supplementary table of these examples for 
ease of reference.

We have added a supplementary table listing the major examples of machine learning and 
AI discussed in the paper. We have not included examples of databases where the 
potential for application of ML/AI methods has been discussed, but no work has yet been 
attempted or published.

○
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In addition, I would be a bit careful about the definition of AI. I generally agree, but some 
people have strong feelings that ML and AI are distinct, because ML requires some level of 
manual feature extraction and so may be considered more of a set of statistical method 
than an "artificial intelligence". For instance, it is easy to argue that linear regression is ML, 
but very few people would call that AI. You use HMMs as an example of AI, which I think 
would be considered quite controversial. I would acknowledge that this is an area of 
controversy, but then stick with the definition you've set here.

We have added a footnote in section 2 recognising that there is disagreement over the 
classification of ML as AI.

○

The biggest area that I think you need to be careful about though is the distinction between 
labelling individual "data points" (such as individual images) and metadata about the overall 
dataset. Metadata about the experimental conditions, species, etc is often easier to come by 
(and already required by many data repositories), but adding labels to enough data points 
to enable supervised learning is an order of magnitude harder. You address this when you 
talk about reliability, but in other places these concepts are slightly conflated.

We have added an additional comment at the start of section 3.4 on the differences 
between labelling metadata and labelling individual data points. In subsequent sections 
we have clarified where the discussion concerns labelling of metadata and 
labelling/annotating individual data points, especially in section 3.6 where the discussion 
shifts from data annotation to errors in metadata.

○

One issue with data management for AI is that there is often a lot of data collected about a 
single or small amount of observations (one species, one or two experimental conditions, 
etc). However, this kind of thing isn't suitable for machine learning/AI, since AI relies on 
there being a large number of observations.

The whole paper concerns attempts to pool datasets (large and small), so we agree with 
the idea that very small datasets are not amenable to AI approaches, but this is not what 
we are discussing here. We clarified this further in the paper.

○

Another issue is the lack of standardisation of experimental profiles. Even if all the meta-
information were present, it would still be incredibly challenging to extract batch effects 
from experiments across labs, given the number of variables that people are changing. Do 
the authors really believe that making the data FAIR and including metadata would help 
overcome this problem? It seems like doing a meta-analysis of data across labs using AI will 
always be somewhat problematic, even if the data was all FAIR.

We agree that this challenge remains, and have inserted a paragraph in the conclusion of 
the paper (right after the suggestions that all data should be FAIR) pointing this out. Many 
thanks for this and the above suggestions!

○
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