56 research outputs found

    Mechanically induced silyl ester cleavage under acidic conditions investigated by AFM-based single-molecule force spectroscopy in the force-ramp mode

    Get PDF
    AFM-based dynamic single-molecule force spectroscopy was used to stretch carboxymethylated amylose (CMA) polymers, which have been covalently tethered between a silanized glass substrate and a silanized AFM tip via acid-catalyzed ester condensation at pH 2.0. Rupture forces were measured as a function of temperature and force loading rate in the force-ramp mode. The data exhibit significant statistical scattering, which is fitted with a maximum likelihood estimation (MLE) algorithm. Bond rupture is described with a Morse potential based Arrhenius kinetics model. The fit yields a bond dissociation energy De = 35 kJ mol−1 and an Arrhenius pre-factor A = 6.6 × 104 s−1. The bond dissociation energy is consistent with previous experiments under identical conditions, where the force-clamp mode was employed. However, the bi-exponential decay kinetics, which the force-clamp results unambiguously revealed, are not evident in the force-ramp data. While it is possible to fit the force-ramp data with a bi-exponential model, the fit parameters differ from the force-clamp experiments. Overall, single-molecule force spectroscopy in the force-ramp mode yields data whose information content is more limited than force-clamp data. It may, however, still be necessary and advantageous to perform force-ramp experiments. The number of successful events is often higher in the force-ramp mode, and competing reaction pathways may make force-clamp experiments impossible

    Mechanically activated rupture of single covalent bonds: evidence of force induced bond hydrolysis.

    Get PDF
    We have used temperature-dependent single molecule force spectroscopy to stretch covalently anchored carboxymethylated amylose (CMA) polymers attached to an amino-functionalized AFM cantilever. Using an Arrhenius kinetics model based on a Morse potential as a one-dimensional representation of covalent bonds, we have extracted kinetic and structural parameters of the bond rupture process. With 35.5 kJ mol−1, we found a significantly smaller dissociation energy and with 9.0 × 102 s−1 to 3.6 × 103 s−1 also smaller Arrhenius pre-factors than expected for homolytic bond scission. One possible explanation for the severely reduced dissociation energy and Arrhenius pre-factors is the mechanically activated hydrolysis of covalent bonds. Both the carboxylic acid amide and the siloxane bond in the amino-silane surface linker are in principle prone to bond hydrolysis. Scattering, slope and curvature of the scattered data plots indicate that in fact two competing rupture mechanisms are observed

    Introduction

    Get PDF
    Drawing on new research material from ten European countries, Asylum Determination in Europe: Ethnographic Perspectives brings together a range of detailed accounts of the legal and bureaucratic processes by which asylum claims are decided.The book includes a legal overview of European asylum determination procedures, followed by sections on the diverse actors involved, the means by which they communicate, and the ways in which they make life and death decisions on a daily basis. It offers a contextually rich account that moves beyond doctrinal law to uncover the gaps and variances between formal policy and legislation, and law as actually practiced. The contributors employ a variety of disciplinary perspectives – sociological, anthropological, geographical and linguistic – but are united in their use of an ethnographic methodological approach. Through this lens, the book captures the confusion, improvisation, inconsistency, complexity and emotional turmoil inherent to the process of claiming asylum in Europe

    Towards Distributed Hash Tables (De)Composition in Ambient Networks

    No full text
    When different wireless networks come in close proximity there is often a need for them to logically combine, or compose. We focus on a known research problem particularly in Ambient Networks (ANs), where heterogeneous Distributed Hash Tables (DHTs) contained in these wireless networks need to merge or divide as a result of these dynamic (de)composition processes, respectively. We present two novel DHT (de)composition models for ANs, known as absorption and gatewaying, that are designed to handle (de)composition of DHTs in different AN network environments, with minimal disturbance to existing member nodes

    Single-Molecule Force-Clamp Experiments Reveal Kinetics of Mechanically Activated Silyl Ester Hydrolysis

    No full text
    We have investigated the strength of silyl ester bonds formed between carboxymethylated amylose (CMA) molecules and silane-functionalized silicon oxide surfaces using AFM-based single-molecule force spectroscopy in the force-clamp mode. Single tethered CMA molecules were picked up, and bond lifetimes were determined at constant clamp forces of 0.8, 1.0, and 1.2 nN at seven temperatures between 295 and 320 K at pH 2.0. The results reveal biexponential rupture kinetics. To obtain the reaction rate constants for each force and temperature individually, the results were analyzed with a biexponential kinetic model using the maximum likelihood estimation (MLE) method. The force-independent kinetic and structural parameters of the underlying bond rupture mechanisms were extracted by fitting the entire data set with a parallel MLE fit procedure using the Zhurkov/Bell model and, alternatively, an Arrhenius kinetics model combined with a Morse potential as an analytic representation of the binding potential. With activation energies between 37 and 40 kJ mol<sup>–1</sup>, and with Arrhenius prefactors between 5 × 10<sup>4</sup> and 2 × 10<sup>6</sup> s<sup>–1</sup>, the results point to the hydrolysis of the silyl ester bond

    Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories

    No full text
    With the ability to engineer ferroelectricity in HfO2 thin films, manufacturable and highly scaled MFM capacitors and MFIS-FETs can be implemented into a CMOS-environment. NVM properties of the resulting devices are discussed and contrasted to existing perovskite based FRAM
    • 

    corecore