6 research outputs found

    Gingival inflammation, enamel defects, and tooth sensitivity in children with amelogenesis imperfecta: a case-control study

    Get PDF
    Gingival conditions and tooth sensitivity of young patients with amelogenesis imperfecta lack in depth studies. This case-control study aimed to compare (1) the gingival inflammation, the presence of enamel defects, and tooth sensitivity in young patients with and without amelogenesis imperfecta and (2) to investigate if any difference exists between subtypes of amelogenesis imperfecta. Methodology: We compared forty-two participants with amelogenesis imperfecta with forty-two controls matched for age, gender, and the number of examined sites. Based on interview, clinical examination, and intraoral photography, we collected data on periodontal conditions, enamel defects and the presence of tooth sensitivity. Comparison tests were performed to investigate if any difference existed between cases and controls; and among cases, between the different subtypes of amelogenesis imperfecta. We performed a post-hoc analysis for any significant difference observed. Results: We observed more gingival inflammation, enamel defects and tooth sensitivity among cases (all p<0.05). Participants with hypocalcified amelogenesis imperfecta had more gingival inflammation, enamel defects, and tooth sensitivity than patients with the hypoplastic and hypomature subtypes (all p<0.05). After adjustment for dental plaque, gingival inflammation was associated with the presence of amelogenesis imperfecta (OR (95%CI) = 1.14 (1.05; 1.24). p<0.01). Conclusion: Gingival inflammation, enamel defect and tooth sensitivity are more frequently observed among young patients with amelogenesis imperfecta, and more specifically among children with the hypocalcified subtype

    Elements of morphology: Standard terminology for the teeth and classifying genetic dental disorders

    Get PDF
    Dental anomalies occur frequently in a number of genetic disorders and act as major signs in diagnosing these disorders. We present definitions of the most common dental signs and propose a classification usable as a diagnostic tool by dentists, clinical geneticists, and other health care providers. The definitions are part of the series Elements of Morphology and have been established after careful discussions within an international group of experienced dentists and geneticists. The classification system was elaborated in the French collaborative network 'TÊTECOU' and the affiliated O-Rares reference/competence centers. The classification includes isolated and syndromic disorders with oral and dental anomalies, to which causative genes and main extraoral signs and symptoms are added. A systematic literature analysis yielded 408 entities of which a causal gene has been identified in 79%. We classified dental disorders in eight groups: dental agenesis, supernumerary teeth, dental size and/or shape, enamel, dentin, dental eruption, periodontal and gingival, and tumor-like anomalies. We aim the classification to act as a shared reference for clinical and epidemiological studies. We welcome critical evaluations of the definitions and classification and will regularly update the classification for newly recognized conditions

    Role of cytoskeletal abnormalities in the neuropathology and pathophysiology of type I lissencephaly

    Get PDF
    Type I lissencephaly or agyria-pachygyria is a rare developmental disorder which results from a defect of neuronal migration. It is characterized by the absence of gyri and a thickening of the cerebral cortex and can be associated with other brain and visceral anomalies. Since the discovery of the first genetic cause (deletion of chromosome 17p13.3), six additional genes have been found to be responsible for agyria–pachygyria. In this review, we summarize the current knowledge concerning these genetic disorders including clinical, neuropathological and molecular results. Genetic alterations of LIS1, DCX, ARX, TUBA1A, VLDLR, RELN and more recently WDR62 genes cause migrational abnormalities along with more complex and subtle anomalies affecting cell proliferation and differentiation, i.e., neurite outgrowth, axonal pathfinding, axonal transport, connectivity and even myelination. The number and heterogeneity of clinical, neuropathological and radiological defects suggest that type I lissencephaly now includes several forms of cerebral malformations. In vitro experiments and mutant animal studies, along with neuropathological abnormalities in humans are of invaluable interest for the understanding of pathophysiological mechanisms, highlighting the central role of cytoskeletal dynamics required for a proper achievement of cell proliferation, neuronal migration and differentiation

    Conservative Treatment of a Large Facial Midroot Perforation

    No full text
    Aim. To report on the endodontic and periodontal management of a root and alveolar process perforation in a maxillary front tooth. Summary. Perforation during access cavity preparation is an infrequent complication during endodontic therapy, leading to potential periodontal tissue breakdown. The case described the two-stage management of a massive facial root perforation requiring a connective tissue graft to correct a mucosal fenestration persisting after orthograde repair of the root defect with MTA

    Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections

    Get PDF
    Varicella zoster virus (VZV) typically causes chickenpox upon primary infection. In rare cases, VZV can give rise to life-threatening disease in otherwise healthy people, but the immunological basis for this remains unexplained. We report 4 cases of acute severe VZV infection affecting the central nervous system or the lungs in unrelated, otherwise healthy children who are heterozygous for rare missense mutations in POLR3A (one patient), POLR3C (one patient), or both (two patients). POLR3A and POLR3C encode subunits of RNA polymerase III. Leukocytes from all 4 patients tested exhibited poor IFN induction in response to synthetic or VZV-derived DNA. Moreover, leukocytes from 3 of the patients displayed defective IFN production upon VZV infection and reduced control of VZV replication. These phenotypes were rescued by transduction with relevant WT alleles. This work demonstrates that monogenic or digenic POLR3A and POLR3C deficiencies confer increased susceptibility to severe VZV disease in otherwise healthy children, providing evidence for an essential role of a DNA sensor in human immunity
    corecore