82 research outputs found
The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat
We describe the SPIDER flight cryostat, which is designed to cool six
millimeter-wavelength telescopes during an Antarctic long-duration balloon
flight. The cryostat, one of the largest to have flown on a stratospheric
payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6
K. Stainless steel capillaries facilitate a high flow impedance connection
between the main liquid helium tank and a smaller superfluid tank, allowing the
latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank.
Each telescope houses a closed cycle helium-3 adsorption refrigerator that
further cools the focal planes down to 300 mK. Liquid helium vapor from the
main tank is routed through heat exchangers that cool radiation shields,
providing negative thermal feedback. The system performed successfully during a
17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold
time of 16.8 days, with 15.9 days occurring during flight.Comment: 15 pgs, 17 fig
The new generation CMB B-mode polarization experiment: POLARBEAR
We describe the Cosmic Microwave Background (CMB) polarization experiment
called Polarbear. This experiment will use the dedicated Huan Tran Telescope
equipped with a powerful 1,200-bolometer array receiver to map the CMB
polarization with unprecedented accuracy. We summarize the experiment, its
goals, and current status
Ultra High Energy Cosmology with POLARBEAR
Observations of the temperature anisotropy of the Cosmic Microwave Background
(CMB) lend support to an inflationary origin of the universe, yet no direct
evidence verifying inflation exists. Many current experiments are focussing on
the CMB's polarization anisotropy, specifically its curl component (called
"B-mode" polarization), which remains undetected. The inflationary paradigm
predicts the existence of a primordial gravitational wave background that
imprints a unique B-mode signature on the CMB's polarization at large angular
scales. The CMB B-mode signal also encodes gravitational lensing information at
smaller angular scales, bearing the imprint of cosmological large scale
structures (LSS) which in turn may elucidate the properties of cosmological
neutrinos. The quest for detection of these signals; each of which is orders of
magnitude smaller than the CMB temperature anisotropy signal, has motivated the
development of background-limited detectors with precise control of systematic
effects. The POLARBEAR experiment is designed to perform a deep search for the
signature of gravitational waves from inflation and to characterize lensing of
the CMB by LSS. POLARBEAR is a 3.5 meter ground-based telescope with 3.8
arcminute angular resolution at 150 GHz. At the heart of the POLARBEAR receiver
is an array featuring 1274 antenna-coupled superconducting transition edge
sensor (TES) bolometers cooled to 0.25 Kelvin. POLARBEAR is designed to reach a
tensor-to-scalar ratio of 0.025 after two years of observation -- more than an
order of magnitude improvement over the current best results, which would test
physics at energies near the GUT scale. POLARBEAR had an engineering run in the
Inyo Mountains of Eastern California in 2010 and will begin observations in the
Atacama Desert in Chile in 2011.Comment: 8 pages, 6 figures, DPF 2011 conference proceeding
The bolometric focal plane array of the Polarbear CMB experiment
The Polarbear Cosmic Microwave Background (CMB) polarization experiment is
currently observing from the Atacama Desert in Northern Chile. It will
characterize the expected B-mode polarization due to gravitational lensing of
the CMB, and search for the possible B-mode signature of inflationary
gravitational waves. Its 250 mK focal plane detector array consists of 1,274
polarization-sensitive antenna-coupled bolometers, each with an associated
lithographed band-defining filter. Each detector's planar antenna structure is
coupled to the telescope's optical system through a contacting dielectric
lenslet, an architecture unique in current CMB experiments. We present the
initial characterization of this focal plane
Design and construction of a carbon fiber gondola for the SPIDER balloon-borne telescope
We introduce the light-weight carbon fiber and aluminum gondola designed for
the SPIDER balloon-borne telescope. SPIDER is designed to measure the
polarization of the Cosmic Microwave Background radiation with unprecedented
sensitivity and control of systematics in search of the imprint of inflation: a
period of exponential expansion in the early Universe. The requirements of this
balloon-borne instrument put tight constrains on the mass budget of the
payload. The SPIDER gondola is designed to house the experiment and guarantee
its operational and structural integrity during its balloon-borne flight, while
using less than 10% of the total mass of the payload. We present a construction
method for the gondola based on carbon fiber reinforced polymer tubes with
aluminum inserts and aluminum multi-tube joints. We describe the validation of
the model through Finite Element Analysis and mechanical tests.Comment: 16 pages, 11 figures. Presented at SPIE Ground-based and Airborne
Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume
914
Development and characterization of the readout system for POLARBEAR-2
POLARBEAR-2 is a next-generation receiver for precision measurements of the
polarization of the cosmic microwave background (Cosmic Microwave Background
(CMB)). Scheduled to deploy in early 2015, it will observe alongside the
existing POLARBEAR-1 receiver, on a new telescope in the Simons Array on Cerro
Toco in the Atacama desert of Chile. For increased sensitivity, it will feature
a larger area focal plane, with a total of 7,588 polarization sensitive
antenna-coupled Transition Edge Sensor (TES) bolometers, with a design
sensitivity of 4.1 uKrt(s). The focal plane will be cooled to 250 milliKelvin,
and the bolometers will be read-out with 40x frequency domain multiplexing,
with 36 optical bolometers on a single SQUID amplifier, along with 2 dark
bolometers and 2 calibration resistors. To increase the multiplexing factor
from 8x for POLARBEAR-1 to 40x for POLARBEAR-2 requires additional bandwidth
for SQUID readout and well-defined frequency channel spacing. Extending to
these higher frequencies requires new components and design for the LC filters
which define channel spacing. The LC filters are cold resonant circuits with an
inductor and capacitor in series with each bolometer, and stray inductance in
the wiring and equivalent series resistance from the capacitors can affect
bolometer operation. We present results from characterizing these new readout
components. Integration of the readout system is being done first on a small
scale, to ensure that the readout system does not affect bolometer sensitivity
or stability, and to validate the overall system before expansion into the full
receiver. We present the status of readout integration, and the initial results
and status of components for the full array.Comment: Presented at SPIE Astronomical Telescopes and Instrumentation 2014:
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for
Astronomy VII. Published in Proceedings of SPIE Volume 915
280 GHz Focal Plane Unit Design and Characterization for the SPIDER-2 Suborbital Polarimeter
We describe the construction and characterization of the 280 GHz bolometric
focal plane units (FPUs) to be deployed on the second flight of the
balloon-borne SPIDER instrument. These FPUs are vital to SPIDER's primary
science goal of detecting or placing an upper limit on the amplitude of the
primordial gravitational wave signature in the cosmic microwave background
(CMB) by constraining the B-mode contamination in the CMB from Galactic dust
emission. Each 280 GHz focal plane contains a 16 x 16 grid of corrugated
silicon feedhorns coupled to an array of aluminum-manganese transition-edge
sensor (TES) bolometers fabricated on 150 mm diameter substrates. In total, the
three 280 GHz FPUs contain 1,530 polarization sensitive bolometers (765 spatial
pixels) optimized for the low loading environment in flight and read out by
time-division SQUID multiplexing. In this paper we describe the mechanical,
thermal, and magnetic shielding architecture of the focal planes and present
cryogenic measurements which characterize yield and the uniformity of several
bolometer parameters. The assembled FPUs have high yields, with one array as
high as 95% including defects from wiring and readout. We demonstrate high
uniformity in device parameters, finding the median saturation power for each
TES array to be ~3 pW at 300 mK with a less than 6% variation across each array
at one standard deviation. These focal planes will be deployed alongside the 95
and 150 GHz telescopes in the SPIDER-2 instrument, slated to fly from McMurdo
Station in Antarctica in December 2018
CMB Observations with a Compact Heterogeneous 150 GHz Interferometer in Chile
We report on the design, first observing season, and analysis of data from a
new prototype millimeter-wave interferometer, MINT. MINT consists of four 145
GHz SIS mixers operating in double-sideband mode in a compact heterogeneous
configuration. The signal band is subdivided by a monolithic channelizer, after
which the correlations between antennas are performed digitally. The typical
receiver sensitivity in a 2 GHz band is 1.4 mK sqrt(s). MINT observed the
cosmic microwave background (CMB) from the Chilean Altiplano. The site has a
median nighttime atmospheric temperature of 9 K at zenith (exclusive of the
CMB). Observations of Mars, Jupiter, and a telescope-mounted calibration source
establish the system's phase and magnitude stability. MINT is the first
CMB-dedicated interferometer to operate above 50 GHz. The same type of system
can be used to probe the Sunyaev-Zel'dovich effect in galaxy clusters near the
SZ null at 217 GHz. We present an analysis of sideband-separated, digitally
sampled data recorded by the array. Based on 215 hours of data taken in late
2001, we set an upper limit on the CMB anisotropy in a band of width Delta
ell=700 around ell=1540 of delta T < 105 microK (95% conf). Increased
sensitivity can be achieved with more integration time, greater bandwidth, and
more elements.Comment: 12 pages, 4 figures. v2: Final ApJS version; rewritten analysis
section made more clea
A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument
We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the Cosmic Microwave Background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of +/- 0.1 degrees. The system performed well in Spider during its successful 16 day flight
Sunyaev-Zel'dovich Effect Observations of the Bullet Cluster (1E 0657-56) with APEX-SZ
We present observations of the Sunyaev-Zel'dovich effect (SZE) in the Bullet
cluster (1E 0657--56) using the APEX-SZ instrument at 150 GHz with a resolution
of 1 arcmin. The main results are maps of the SZE in this massive, merging
galaxy cluster. The cluster is detected with 23 sigma significance within the
central 1 arcmin radius of the source position. The SZE map has a broadly
similar morphology to that in existing X-ray maps of this system, and we find
no evidence for significant contamination of the SZE emission by radio or IR
sources. In order to make simple quantitative comparisons with cluster gas
models derived from X-ray observations, we fit our data to an isothermal
elliptical beta model, despite the inadequacy of such a model for this complex
merging system. With an X-ray derived prior on the power-law index, beta = 1.04
+0.16 -0.10, we find a core radius r_c =142 +/- 18 arcsec, an axial ratio of
0.889 +/- 0.072, and a central temperature decrement of -771 +/- 71
micro-K_CMB, including a +/-5.5% flux calibration uncertainty. Combining the
APEX-SZ map with a map of projected electron surface density from Chandra X-ray
observations, we determine the mass-weighted temperature of the cluster gas to
be T_mg=10.8 +/- 0.9 keV, significantly lower than some previously reported
X-ray spectroscopic temperatures. Under the assumption of an isothermal cluster
gas distribution in hydrostatic equilibrium, we compute the gas mass fraction
for prolate and oblate spheroidal geometries and find it to be consistent with
previous results from X-ray and weak lensing observations. This work is the
first result from the APEX-SZ experiment, and represents the first reported
scientific result from observations with a large array of multiplexed
superconducting transition-edge sensor bolometers.Comment: 17 pages, 5 figures, accepted for publication in the Astrophysical
Journal. Changes in v2: Modified in response to referee comments. Also,
improvements in the analysis pipeline and flux calibration result in
modification of the maps and model fit parameters. Calibration section and
X-ray comparison sections are significantly modifie
- …