349 research outputs found

    The Feasibility of a Using a Smart Button Mobile Health System to Self-Track Medication Adherence and Deliver Tailored Short Message Service Text Message Feedback

    Get PDF
    BACKGROUND: As many as 50% of people experience medication nonadherence, yet studies for detecting nonadherence and delivering real-time interventions to improve adherence are lacking. Mobile health (mHealth) technologies show promise to track and support medication adherence. OBJECTIVE: The study aimed to evaluate the feasibility and acceptability of using an mHealth system for medication adherence tracking and intervention delivery. The mHealth system comprises a smart button device to self-track medication taking, a companion smartphone app, a computer algorithm used to determine adherence and then deliver a standard or tailored SMS (short message service) text message on the basis of timing of medication taking. Standard SMS text messages indicated that the smartphone app registered the button press, whereas tailored SMS text messages encouraged habit formation and systems thinking on the basis of the timing the medications were taken. METHODS: A convenience sample of 5 adults with chronic kidney disease (CKD), who were prescribed antihypertensive medication, participated in a 52-day longitudinal study. The study was conducted in 3 phases, with a standard SMS text message sent in phases 1 (study days 1-14) and 3 (study days 46-52) and tailored SMS text messages sent during phase 2 (study days 15-45) in response to participant medication self-tracking. Medication adherence was measured using: (1) the smart button and (2) electronic medication monitoring caps. Concordance between these 2 methods was evaluated using percentage of measurements made on the same day and occurring within ±5 min of one another. Acceptability was evaluated using qualitative feedback from participants. RESULTS: A total of 5 patients with CKD, stages 1-4, were enrolled in the study, with the majority being men (60%), white (80%), and Hispanic/Latino (40%) of middle age (52.6 years, SD 22.49; range 20-70). The mHealth system was successfully initiated in the clinic setting for all enrolled participants. Of the expected 260 data points, 36.5% (n=95) were recorded with the smart button and 76.2% (n=198) with electronic monitoring. Concordant events (n=94), in which events were recorded with both the smart button and electronic monitoring, occurred 47% of the time and 58% of these events occurred within ±5 min of one another. Participant comments suggested SMS text messages were encouraging. CONCLUSIONS: It was feasible to recruit participants in the clinic setting for an mHealth study, and our system was successfully initiated for all enrolled participants. The smart button is an innovative way to self-report adherence data, including date and timing of medication taking, which were not previously available from measures that rely on recall of adherence. Although the selected smart button had poor concordance with electronic monitoring caps, participants were willing to use it to self-track medication adherence, and they found the mHealth system acceptable to use in most cases

    Mass-radius relationships for exoplanets

    Full text link
    For planets other than Earth, interpretation of the composition and structure depends largely on comparing the mass and radius with the composition expected given their distance from the parent star. The composition implies a mass-radius relation which relies heavily on equations of state calculated from electronic structure theory and measured experimentally on Earth. We lay out a method for deriving and testing equations of state, and deduce mass-radius and mass-pressure relations for key materials whose equation of state is reasonably well established, and for differentiated Fe/rock. We find that variations in the equation of state, such as may arise when extrapolating from low pressure data, can have significant effects on predicted mass- radius relations, and on planetary pressure profiles. The relations are compared with the observed masses and radii of planets and exoplanets. Kepler-10b is apparently 'Earth- like,' likely with a proportionately larger core than Earth's, nominally 2/3 of the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an Fe-based core which is likely to be proportionately smaller than Earth's. GJ 1214b lies between the mass-radius curves for H2O and CH4, suggesting an 'icy' composition with a relatively large core or a relatively large proportion of H2O. CoRoT-2b is less dense than the hydrogen relation, which could be explained by an anomalously high degree of heating or by higher than assumed atmospheric opacity. HAT-P-2b is slightly denser than the mass-radius relation for hydrogen, suggesting the presence of a significant amount of matter of higher atomic number. CoRoT-3b lies close to the hydrogen relation. The pressure at the center of Kepler-10b is 1.5+1.2-1.0 TPa. The central pressure in CoRoT-7b is probably close to 0.8TPa, though may be up to 2TPa.Comment: Added more recent exoplanets. Tidied text and references. Added extra "rock" compositions. Responded to referee comment

    Hadron formation in high energy photonuclear reactions

    Get PDF
    We present a new method to account for coherence length effects in a semi-classical transport model. This allows us to describe photo- and electroproduction at large nuclei (A>12) and high energies using a realistic coupled channel description of the final state interactions that goes beyond simple Glauber theory. We show that the purely absorptive treatment of the final state interactions can lead to wrong estimates of color transparency and formation time effects in particle production. As an example, we discuss exclusive rho^0 photoproduction on Pb at a photon energy of 7 GeV as well as K^+ production in the photon energy range 1-7 GeV.Comment: 14 pages, 6 figures, version published in Phys. Rev.

    Thermodynamic properties and electrical conductivity of strongly correlated plasma media

    Full text link
    We study thermodynamic properties and the electrical conductivity of dense hydrogen and deuterium using three methods: classical reactive Monte Carlo (REMC), direct path integral Monte Carlo (PIMC) and a quantum dynamics method in the Wigner representation of quantum mechanics. We report the calculation of the deuterium compression quasi-isentrope in good agreement with experiments. We also solve the Wigner-Liouville equation of dense degenerate hydrogen calculating the initial equilibrium state by the PIMC method. The obtained particle trajectories determine the momentum-momentum correlation functions and the electrical conductivity and are compared with available theories and simulations

    The colour dipole approach to small-x processes

    Get PDF
    We explain why it is possible to formulate a wide variety of high energy (small-x) photon-proton processes in terms of a universal dipole cross section and compare and contrast various parameterizations of this function that exist in the literature.Comment: 6 pages, latex, 2 figures. Contribution to Durham Collider Workshop (Sept 99) proceeding

    Results of survey of stakeholders regarding knowledge of and attitudes towards feed intake, efficiency and genetic improvement concepts

    Get PDF
    Individual animal feed efficiency plays a key role in the profitability and sustainability of the US beef industry. During the growing and finishing phase of production, a 10% improvement in feed efficiency has a two-fold greater impact on profit than a 10% increase in rate of gain (Fox et al., 2001). The traits that beef producers routinely record are outputs which determine the value of product sold and not the inputs defining the cost of beef production. The inability to routinely measure feed intake and feed efficiency on large numbers of cattle has precluded the efficient application of selection despite moderate heritabilities (h2 = 0.16-0.46; Archer et al., 1999). Feed costs in calf feeding and yearling finishing systems account for approximately 66% and 77% of costs, respectively (Anderson et al., 2005).Feed costs account for approximately 65% of total beef production costs. Of the metabolizable energy required from conception to consumption of a beef animal, 72% is utilized during the cow-calf segment of production while 28% of calories are utilized in the calf growing and finishing phases of production (Ferrell and Jenkins, 1982). Of the calories consumed in the cow-calf segment, more than half are used for maintenance which presents a large selection target

    Variational Density Matrix Method for Warm Condensed Matter and Application to Dense Hydrogen

    Get PDF
    A new variational principle for optimizing thermal density matrices is introduced. As a first application, the variational many body density matrix is written as a determinant of one body density matrices, which are approximated by Gaussians with the mean, width and amplitude as variational parameters. The method is illustrated for the particle in an external field problem, the hydrogen molecule and dense hydrogen where the molecular, the dissociated and the plasma regime are described. Structural and thermodynamic properties (energy, equation of state and shock Hugoniot) are presented.Comment: 26 pages, 13 figures. submitted to Phys. Rev. E, October 199

    Unitarity Corrections to the Proton Structure Functions through the Dipole Picture

    Full text link
    We study the dipole picture for the description of the deep inelastic scattering, focusing on the structure functions which are driven directly by the gluon distribution. One performs estimates using the effective dipole cross section given by the Glauber-Mueller approach in QCD, which encodes the corrections due to the unitarity effects associated with the saturation phenomenon. We also address issues about frame invariance of the calculations when analysing the observables.Comment: 16 pages, 8 figures. Version to be published in Phys. Rev.
    corecore