115 research outputs found

    Plasma oxyphytosterols most likely originate from hepatic oxidation and subsequent spill-over in the circulation

    Get PDF
    We evaluated oxyphytosterol (OPS) concentrations in plasma and various tissues of two genetically modified mouse models with either increased cholesterol (apoE KO mice) or increased cholesterol and plant sterol (PS) concentrations (apoExABCG8 dKO mice). Sixteen female apoE KO and 16 dKO mice followed the same standard, low OPS-chow diet. Animals were euthanized at 36 weeks to measure PS and OPS concentrations in plasma, brain, liver and aortic tissue. Cholesterol and oxysteml (OS) concentrations were analyzed as reference for sterol oxidation in general. Plasma campesterol (24.1 +/- 4.3 vs. 11.8 +/- 3.0 mg/dL) and sitosterol (67.4 +/- 12.7 vs. 4.9 +/- 1.1 mg/dL) concentrations were severely elevated in the dKO compared to the apoE KO mice (p < 0.001). Also, in aortic and brain tissue, PS levels were significantly elevated in dKO. However, plasma, aortic and brain OPS concentrations were comparable or even lower in the dKO mice. In contrast, in liver tissue, both PS and OPS concentrations were severely elevated in the dKO compared to apoE KO mice (sum OPS: 7.4 +/- 1.6 vs. 4.1 +/- 0.8 ng/mg, p < 0.001). OS concentrations followed cholesterol concentrations in plasma and all tissues suggesting ubiquitous oxidation. Despite severely elevated PS concentrations, OPS concentrations were only elevated in liver tissue, suggesting that OPS are primarily formed in the liver and plasma concentrations originate from hepatic spill-over into the circulation

    24(S)-Saringosterol Prevents Cognitive Decline in a Mouse Model for Alzheimer's Disease

    Get PDF
    We recently found that dietary supplementation with the seaweed Sargassum fusiforme, containing the preferential LXR beta-agonist 24(S)-saringosterol, prevented memory decline and reduced amyloid-beta (A beta) deposition in an Alzheimer's disease (AD) mouse model without inducing hepatic steatosis. Here, we examined the effects of 24(S)-saringosterol as a food additive on cognition and neuropathology in AD mice. Six-month-old male APPswePS1 Delta E9 mice and wildtype C57BL/6J littermates received 24(S)-saringosterol (0.5 mg/25 g body weight/day) (APPswePS1 Delta E9 n = 20; C57BL/6J n = 19) or vehicle (APPswePS1 Delta E9 n = 17; C57BL/6J n = 19) for 10 weeks. Cognition was assessed using object recognition and object location tasks. Sterols were analyzed by gas chromatography/mass spectrometry, A beta and inflammatory markers by immunohistochemistry, and gene expression by quantitative real-time PCR. Hepatic lipids were quantified after Oil-Red-O staining. Administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1 Delta E9 mice without affecting the A beta plaque load. Moreover, 24(S)-saringosterol prevented the increase in the inflammatory marker Iba1 in the cortex of APPswePS1 Delta E9 mice (p < 0.001). Furthermore, 24(S)-saringosterol did not affect the expression of lipid metabolism-related LXR-response genes in the hippocampus nor the hepatic neutral lipid content. Thus, administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1 Delta E9 mice independent of effects on A beta load and without adverse effects on liver fat content. The anti-inflammatory effects of 24(S)-saringosterol may contribute to the prevention of cognitive decline

    CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice

    Get PDF
    Group 1 CD1 (CD1a, CD1b, and CD1c)–restricted T cells recognize mycobacterial lipid antigens and are found at higher frequencies in Mycobacterium tuberculosis (Mtb)–infected individuals. However, their role and dynamics during infection remain unknown because of the lack of a suitable small animal model. We have generated human group 1 CD1 transgenic (hCD1Tg) mice that express all three human group 1 CD1 isoforms and support the development of group 1 CD1–restricted T cells with diverse T cell receptor usage. Both mycobacterial infection and immunization with Mtb lipids elicit group 1 CD1–restricted Mtb lipid–specific T cell responses in hCD1Tg mice. In contrast to CD1d-restricted NKT cells, which rapidly respond to initial stimulation but exhibit anergy upon reexposure, group 1 CD1–restricted T cells exhibit delayed primary responses and more rapid secondary responses, similar to conventional T cells. Collectively, our data demonstrate that group 1 CD1–restricted T cells participate in adaptive immune responses upon mycobacterial infection and could serve as targets for the development of novel Mtb vaccines

    Dietary Sargassum fusiforme improves memory and reduces amyloid plaque load in an Alzheimer's disease mouse model

    Get PDF
    Activation of liver X receptors (LXRs) by synthetic agonists was found to improve cognition in Alzheimer's disease (AD) mice. However, these LXR agonists induce hypertriglyceridemia and hepatic steatosis, hampering their use in the clinic. We hypothesized that phytosterols as LXR agonists enhance cognition in AD without affecting plasma and hepatic triglycerides. Phytosterols previously reported to activate LXRs were tested in a luciferase-based LXR reporter assay. Using this assay, we found that phytosterols commonly present in a Western type diet in physiological concentrations do not activate LXRs. However, a lipid extract of the 24(S)-Saringosterol-containing seaweed Sargassum fusiforme did potently activate LXR beta. Dietary supplementation of crude Sargassum fusiforme or a Sargassum fusiforme-derived lipid extract to AD mice significantly improved short-term memory and reduced hippocampal A beta plaque load by 81%. Notably, none of the side effects typically induced by full synthetic LXR agonists were observed. In contrast, administration of the synthetic LXRa activator, AZ876, did not improve cognition and resulted in the accumulation of lipid droplets in the liver. Administration of Sargassum fusiforme-derived 24(S)-Saringosterol to cultured neurons reduced the secretion of A beta 42. Moreover, conditioned medium from 24(S)-Saringosterol-treated astrocytes added to microglia increased phagocytosis of A beta. Our data show that Sargassum fusiforme improves cognition and alleviates AD pathology. This may be explained at least partly by 24(S)-Saringosterol-mediated LXR beta activation.</p

    Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis

    Get PDF
    Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18-interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor (GEF) complex. 12 of these 28 interactions are supported by prior reports and we have directly validated novel interactions with SEC22A, TMCO4 and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites (MCSs), interactors included groups of microtubule/membrane-remodelling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We find that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Further, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated, or in which ORP2 expression is disrupted. Our data demonstrate that GEF-dependent Rab-interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder

    Multiple Dendritic Cell Populations Activate CD4+ T Cells after Viral Stimulation

    Get PDF
    Dendritic cells (DC) are a heterogeneous cell population that bridge the innate and adaptive immune systems. CD8α DC play a prominent, and sometimes exclusive, role in driving amplification of CD8+ T cells during a viral infection. Whether this reliance on a single subset of DC also applies for CD4+ T cell activation is unknown. We used a direct ex vivo antigen presentation assay to probe the capacity of flow cytometrically purified DC populations to drive amplification of CD4+ and CD8+ T cells following infection with influenza virus by different routes. This study examined the contributions of non-CD8α DC populations in the amplification of CD8+ and CD4+ T cells in cutaneous and systemic influenza viral infections. We confirmed that in vivo, effective immune responses for CD8+ T cells are dominated by presentation of antigen by CD8α DC but can involve non-CD8α DC. In contrast, CD4+ T cell responses relied more heavily on the contributions of dermal DC migrating from peripheral lymphoid tissues following cutaneous infection, and CD4 DC in the spleen after systemic infection. CD4+ T cell priming by DC subsets that is dependent upon the route of administration raises the possibility that vaccination approaches could be tailored to prime helper T cell immunity
    corecore