21 research outputs found

    Interactive impacts of meteorological and hydrological conditions on the physical and biogeochemical structure of a coastal system

    Get PDF
    The German Bight was exposed to record high riverine discharges in June 2013, as a result of flooding of the Elbe and Weser rivers. Several anomalous observations suggested that the hydrodynamical and biogeochemical states of the system were impacted by this event. In this study, we developed a biogeochemical model and coupled it with a previously introduced high-resolution hydrodynamical model of the southern North Sea in order to better characterize these impacts and gain insight into the underlying processes. Performance of the model was assessed using an extensive set of in situ measurements for the period 2011–2014. We first improved the realism of the hydrodynamic model with regard to the representation of cross-shore gradients, mainly through inclusion of flow-dependent horizontal mixing. Among other characteristic features of the system, the coupled model system can reproduce the low salinities, high nutrient concentrations and low oxygen concentrations in the bottom layers observed within the German Bight following the flood event. Through a scenario analysis, we examined the sensitivity of the patterns observed during July 2013 to the hydrological and meteorological forcing in isolation. Within the region of freshwater influence (ROFI) of the Elbe–Weser rivers, the flood event clearly dominated the changes in salinity and nutrient concentrations, as expected. However, our findings point to the relevance of the peculiarities in the meteorological conditions in 2013 as well: a combination of low wind speeds, warm air temperatures and cold bottom-water temperatures resulted in a strong thermal stratification in the outer regions and limited vertical nutrient transport to the surface layers. Within the central region, the thermal and haline dynamics interactively resulted in an intense density stratification. This intense stratification, in turn, led to enhanced primary production within the central region enriched by nutrients due to the flood but led to reduction within the nutrient-limited outer region, and it caused a widespread oxygen depletion in bottom waters. Our results further point to the enhancement of the current velocities at the surface as a result of haline stratification and to intensification of the thermohaline estuarine-like circulation in the Wadden Sea, both driven by the flood event

    Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance

    Get PDF
    The acquisition of language and speech is uniquely human, but how genetic changes might have adapted the nervous system to this capacity is not well understood. Two human-specific amino acid substitutions in the transcription factor forkhead box P2 (FOXP2) are outstanding mechanistic candidates, as they could have been positively selected during human evolution and as FOXP2 is the sole gene to date firmly linked to speech and language development. When these two substitutions are introduced into the endogenous Foxp2 gene of mice (Foxp2[superscript hum]), cortico-basal ganglia circuits are specifically affected. Here we demonstrate marked effects of this humanization of Foxp2 on learning and striatal neuroplasticity. Foxp2[superscript hum/hum] mice learn stimulus–response associations faster than their WT littermates in situations in which declarative (i.e., place-based) and procedural (i.e., response-based) forms of learning could compete during transitions toward proceduralization of action sequences. Striatal districts known to be differently related to these two modes of learning are affected differently in the Foxp2[superscript hum/hum] mice, as judged by measures of dopamine levels, gene expression patterns, and synaptic plasticity, including an NMDA receptor-dependent form of long-term depression. These findings raise the possibility that the humanized Foxp2 phenotype reflects a different tuning of corticostriatal systems involved in declarative and procedural learning, a capacity potentially contributing to adapting the human brain for speech and language acquisition.Nancy Lurie Marks Family FoundationSimons Foundation (Autism Research Initiative Grant 137593)National Institutes of Health (U.S.) (Grant R01 MH060379)Wellcome Trust (London, England) (Grant 075491/Z/04)Wellcome Trust (London, England) (Grant 080971)Fondation pour la recherche medicaleMax Planck Society for the Advancement of Scienc

    Effects of Nutrient Management Scenarios on Marine Eutrophication Indicators: A Pan-European, Multi-Model Assessment in Support of the Marine Strategy Framework Directive

    Get PDF
    A novel pan-European marine model ensemble was established, covering nearly all seas under the regulation of the Marine Strategy Framework Directive (MSFD), with the aim of providing a consistent assessment of the potential impacts of riverine nutrient reduction scenarios on marine eutrophication indicators. For each sea region, up to five coupled biogeochemical models from institutes all over Europe were brought together for the first time. All model systems followed a harmonised scenario approach and ran two simulations, which varied only in the riverine nutrient inputs. The load reductions were evaluated with the catchment model GREEN and represented the impacts due to improved management of agriculture and wastewater treatment in all European river systems. The model ensemble, comprising 15 members, was used to assess changes to the core eutrophication indicators as defined within MSFD Descriptor 5. In nearly all marine regions, riverine load reductions led to reduced nutrient concentrations in the marine environment. However, regionally the nutrient input reductions led to an increase in the non-limiting nutrient in the water, especially in the case of phosphate concentrations in the Black Sea. Further core eutrophication indicators, such as chlorophyll-a, bottom oxygen and the Trophic Index TRIX, improved nearly everywhere, but the changes were less pronounced than for the inorganic nutrients. The model ensemble displayed strong consistency and robustness, as most if not all models indicated improvements in the same areas. There were substantial differences between the individual seas in the speed of response to the reduced nutrient loads. In the North Sea ensemble, a stable plateau was reached after only three years, while the simulation period of eight years was too short to obtain steady model results in the Baltic Sea. The ensemble exercise confirmed the importance of improved management of agriculture and wastewater treatments in the river catchments to reduce marine eutrophication. Several shortcomings were identified, the outcome of different approaches to compute the mean change was estimated and potential improvements are discussed to enhance policy support. Applying a model ensemble enabled us to obtain highly robust and consistent model results, substantially decreasing uncertainties in the scenario outcom

    Effect of altered eating habits and periods during Ramadan fasting on intraocular pressure, tear secretion, corneal and anterior chamber parameters

    No full text
    Purpose To determine whether altered eating habits and periods, especially the pre-dawn meal, during Ramadan fasting have any significant effect on intraocular pressure (IOP), tear secretion, corneal and anterior chamber parameters. Methods IOP, basal tear secretion (BTS), reflex tear secretion (RTS), and Pentacam measurements of 31 healthy volunteers were performed at 0800 and 1600 hours during Ramadan fasting and 1 month later during non-fasting period. Results Comparison of measurements between fasting and non-fasting periods at 0800 hours revealed significantly higher values for IOP (P = 0.005), RTS (P = 0.006), and BTS (P = 0.014) during fasting. Conversely at 1600 hours, IOP = was significantly lower during fasting (P = 0.013) and no statistically significant difference was noted for RTS and BTS. IOP showed a diurnal variation of 2.45 mmHg (P <0.001) and BTS showed a 3.06 mm decrease (P = 0.04) during the fasting period. No significant differences could be found in the corneal and anterior chamber parameters during fasting and non-fasting periods. Conclusions Our results revealed that fluid loading at the pre-dawn meal during Ramadan fasting might increase the IOP = and tear secretion in the early morning period and these values decrease remarkably at the end of 12 h of fasting due to dehydration. Eye (2010) 24, 97-100; doi: 10.1038/eye.2009.96; published online 8 May 200

    Effects Of Prophylactic Thyroid Hormone Replacement In Euthyroid Hashimoto'S Thyroiditis

    No full text
    Hashimoto's thyroiditis is the most frequent autoimmune thyroid disease. L-thyroxine therapy can reduce the incidence and alleviate the symptoms of this disease. The aim of this study was to evaluate the effects of prophylactic L-thyroxine treatment on clinical and laboratory findings of patients who were euthyroid at the time of diagnosis. Thirty-three patients who had diagnosis of euthyroid Hashimoto's thyroiditis were randomized to two groups, one group received prophylactic L-thyroxine treatment and the other was followed-up without treatment. Initial thyroid function tests, autoantibodies, ultrasonography, fine needle aspiration biopsy and peripheral blood lymphocyte subsets were similar in the two study groups. After 15 months of L-thyroxine treatment, there was a significant increase in free T, and a significant decrease in TSH and anti-thyroglobulin antibody anti-thyroid peroxidase antibody levels. CD8(+) cell counts increased in both groups, CD4/CD8 levels decreased significantly because of the increase in CD8(+) cell count levels. Though there was no change in cytological findings, ultrasonography showed a decrease in thyroid volume in L-thyroxine receiving patients whereas an increase was detected in patients who were followed without treatment. In conclusion, prophylactic thyroid hormone therapy can be used in patients with Hashimoto's thyroiditis even if they are euthyroid.WoSScopu

    Diarrhea In Neutropenic Patients: A Prospective Cohort Study With Emphasis On Neutropenic Enterocolitis

    No full text
    Background: Although diarrhea is a frequent complication in neutropenic patients, its true incidence, risk factors and clinical course have not been investigated prospectively. Patients and methods: The study was carried out at Hacettepe University Hospital for Adults and involved patients over 16 years of age. Patients with malignant diseases who were neutropenic on admission or who became neutropenic during their stay in the wards between January 2001 and February 2003 were included. They were monitored daily until discharge, exitus, or recovery from neutropenia-whichever occurred earlier-to monitor the presence of diarrhea and other infections. Results: A total of 317 neutropenic episodes in 215 patients were followed. Diarrhea was observed in 18.6% episodes, and the incidence of NEC was 3.5%. The etiology in 27% episodes of diarrhea could not be identified. The use of anthracyclines and mitoxantrone increased the incidence of diarrhea. Prior use of penicillin derivatives plus beta-lactam inhibitors and N-imidazoline derivatives was associated with decreased incidence of diarrhea. Conclusions: Diarrhea is a common complication in neutropenic patients. Not only specific conditions like NEC, but also nonspecific diseases like parasitosis may be the cause of diarrhea in this patient population.WoSScopu

    Epigenetic regulation by BAF complexes limits neural stem cell proliferation by suppressing Wnt signaling in late embryonic development.

    No full text
    During early cortical development, neural stem cells (NSCs) divide symmetrically to expand the progenitor pool, whereas, in later stages, NSCs divide asymmetrically to self-renew and produce other cell types. The timely switch from such proliferative to differentiative division critically determines progenitor and neuron numbers. However, the mechanisms that limit proliferative division in late cortical development are not fully understood. Here, we show that the BAF (mSWI/SNF) complexes restrict proliferative competence and promote neuronal differentiation in late corticogenesis. Inactivation of BAF complexes leads to H3K27me3-linked silencing of neuronal differentiation-related genes, with concurrent H3K4me2-mediated activation of proliferation-associated genes via de-repression of Wnt signaling. Notably, the deletion of BAF complexes increased proliferation of neuroepithelial cell-like NSCs, impaired neuronal differentiation, and exerted a Wnt-dependent effect on neocortical and hippocampal development. Thus, these results demonstrate that BAF complexes act as both activators and repressors to control global epigenetic and gene expression programs in late corticogenesis
    corecore