9 research outputs found

    Mapping the Read2/CTV3 controlled clinical terminologies to Phecodes in UK Biobank primary care electronic health records: implementation and evaluation

    Get PDF
    OBJECTIVE: To establish and validate mappings between primary care clinical terminologies (Read Version 2, Clinical Terms Version 3) and Phecodes. METHODS: We processed 123,662,421 primary care events from 230,096 UK Biobank (UKB) participants. We assessed the validity of the primary care-derived Phecodes by conducting PheWAS analyses for seven pre-selected SNPs in the UKB and compared with estimates from BioVU. RESULTS: We mapped 92% of Read2 (n=10,834) and 91% of CTV3 (n=21,988) to 1,449 and 1,490 Phecodes. UKB PheWAS using Phecodes from primary care EHR and hospitalizations replicated all (n=22) previously-reported genotype-phenotype associations. When limiting Phecodes to primary care EHR, replication was 81% (n=18). CONCLUSION: We introduced a first version of mappings from Read2/CTV3 to Phecodes. The reference list of diseases provided by Phecodes can be extended, enabling researchers to leverage primary care EHR for high-throughput discovery research

    De-black-boxing health AI: demonstrating reproducible machine learning computable phenotypes using the N3C-RECOVER Long COVID model in the All of Us data repository

    Get PDF
    Machine learning (ML)-driven computable phenotypes are among the most challenging to share and reproduce. Despite this difficulty, the urgent public health considerations around Long COVID make it especially important to ensure the rigor and reproducibility of Long COVID phenotyping algorithms such that they can be made available to a broad audience of researchers. As part of the NIH Researching COVID to Enhance Recovery (RECOVER) Initiative, researchers with the National COVID Cohort Collaborative (N3C) devised and trained an ML-based phenotype to identify patients highly probable to have Long COVID. Supported by RECOVER, N3C and NIH’s All of Us study partnered to reproduce the output of N3C’s trained model in the All of Us data enclave, demonstrating model extensibility in multiple environments. This case study in ML-based phenotype reuse illustrates how open-source software best practices and cross-site collaboration can de-black-box phenotyping algorithms, prevent unnecessary rework, and promote open science in informatics

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease

    COVID-19 Host Genetics Initiative. A first update on mapping the human genetic architecture of COVID-19

    No full text
    The COVID-19 pandemic continues to pose a major public health threat, especially in countries with low vaccination rates. To better understand the biological underpinnings of SARS-CoV-2 infection and COVID-19 severity, we formed the COVID-19 Host Genetics Initiative1. Here we present a genome-wide association study meta-analysis of up to 125,584 cases and over 2.5 million control individuals across 60 studies from 25 countries, adding 11 genome-wide significant loci compared with those previously identified2. Genes at new loci, including SFTPD, MUC5B and ACE2, reveal compelling insights regarding disease susceptibility and severity.</p

    A first update on mapping the human genetic architecture of COVID-19

    No full text
    corecore