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ABSTRACT

Machine learning (ML)-driven computable phenotypes are among the most challenging to share and reproduce.

Despite this difficulty, the urgent public health considerations around Long COVID make it especially important

to ensure the rigor and reproducibility of Long COVID phenotyping algorithms such that they can be made avail-

able to a broad audience of researchers. As part of the NIH Researching COVID to Enhance Recovery

(RECOVER) Initiative, researchers with the National COVID Cohort Collaborative (N3C) devised and trained an

ML-based phenotype to identify patients highly probable to have Long COVID. Supported by RECOVER, N3C

and NIH’s All of Us study partnered to reproduce the output of N3C’s trained model in the All of Us data enclave,

demonstrating model extensibility in multiple environments. This case study in ML-based phenotype reuse

illustrates how open-source software best practices and cross-site collaboration can de-black-box phenotyping

algorithms, prevent unnecessary rework, and promote open science in informatics.
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INTRODUCTION

Post-acute sequelae of SARS-CoV-2 infection (PASC) and Long

COVID (hereafter referred to collectively as Long COVID) have

been recognized as potentially debilitating conditions associated

with COVID-19 infection since the Spring of 2020, and have

attracted significant research attention and funding in that time.

However, a firm clinical definition of Long COVID continues to be

elusive. The World Health Organization (WHO) published a con-

sensus definition in 2021,1 but it has not been universally accepted;

its breadth, non-specificity, and overlap with other conditions

makes it difficult to apply in clinical practice or research.2 This defi-

nitional uncertainty impacts clinical care, but also affects the accu-

racy with which we can use data to ascertain cases for retrospective

or prospective research, surveillance, or clinical decision support.

In 2021, we used the National COVID Cohort Collaborative

(N3C) electronic health record (EHR) data repository of over 16M

patients across >230 clinical sites to develop a machine learning

(ML) model to identify potential Long COVID patients.3 We trained

the model to recognize Long COVID using the records of patients

who had sought or been referred to care at a Long COVID specialty

clinic. We have since updated the model to train on data from

patients with a “U09.9” International Classification of Diseases-10-

Clinical Modification (ICD-10-CM) diagnosis code (“Post COVID-

19 condition, unspecified”), which was released for use in the United

States on October 1, 2021. This model has been used in studies4–6 as

part of the NIH Researching COVID to Enhance Recovery

(RECOVER) Initiative, which seeks to understand, treat, and pre-

vent PASC. For more information on RECOVER, visit https://recov-

ercovid.org/.

Ideal computable phenotypes are standardized, shareable, and

machine-readable artifacts that allow reproducible patient cohort

identification,7 all characteristics that promote rigor, reproducibil-

ity, and transparency to enable translational science, improved clini-

cal research outcomes, and clinical decision support. However, ML-

driven phenotypes are among the most challenging to share and

reproduce due to their complexity, often-extensive feature engineer-

ing pipelines, and underlying assumptions about both the data and

the data modeling that make translation to another environment or

site challenging. Despite this difficulty, the urgent public health con-

siderations around Long COVID make it especially important to

ensure the rigor and reproducibility of Long COVID phenotyping

algorithms such that they can be made available to a broad base of

researchers, institutions, and clinical settings. Without a generaliz-

able computable phenotype for Long COVID, we cannot electroni-

cally identify cohorts of Long COVID patients in clinical data

repositories. Without this ability, otherwise “unlabeled” patients

may be left out of opportunities to join clinical trials, and retrospec-

tive researchers will lack the ability to investigate Long COVID, its

risk factors, and its outcomes at a population level. Through

RECOVER, N3C and NIH’s All of Us study8 partnered to repro-

duce the output of N3C’s trained model in the All of Us data

enclave, demonstrating extensibility in multiple environments.

Here, we describe our efforts to translate the N3C model in a

second, massive multi-institutional research data environment,

despite the challenges presented by a newly defined disease. We

believe these principles and lessons learned can be applied more

broadly to promote reproducibility and transparency of ML-based

computable phenotypes, thus realizing the potential of this increas-

ingly prominent method in clinical informatics.

MATERIALS AND METHODS

Study design and base population
To model Long COVID, we used EHR data integrated and harmon-

ized inside the secure N3C Data Enclave to identify healthcare uti-

lization patterns and clinical features among patients with COVID-

19. The methods for patient identification, data acquisition, inges-

tion, and harmonization into the N3C Enclave have been described

previously.9,10 Our ML-based Long COVID phenotype has also

been previously described,3 with some details repeated below to pro-

mote understanding of the current work. Detailed information on

updates made to the original model since initial publication is avail-

able in Supplemental Methods.

We define our base population (n¼2 465 242, as of N3C data

release v87) as any adult patient (age �18 years) with either a

COVID-19 diagnosis code (U07.1) or a positive SARS-CoV-2 PCR

or antigen test, for whom at least 145 days have passed since

COVID-19 index date, and who have had at least one healthcare

encounter between 45 and 300 days from their COVID-19 index

date. See Supplemental Figure S1 for a visualization of these criteria.

“COVID-19 index date” is defined as the earliest date of a positive

indicator for a patient. For patients with multiple positive tests or

diagnosis codes, we select the date of the first positive test as the

index.

The original model was trained on patients who were seen at a

Long COVID specialty clinic, as there was no official ICD-10-CM

code for PASC or Long COVID until October 1, 2021. At present,

however, the ICD-10-CM code U09.9 (“Post COVID-19 condition,

unspecified”) has been available for use for just over a year. Due to

its greater specificity and larger sample size, the current model uses

N3C patients that qualify for all of the above inclusion criteria and

have a U09.9 diagnosis code as training and test data (n¼7221 for

training and n¼1653 for test).

Feature engineering for the updated model proceeded much the

same as the original model, accounting for demographics, healthcare

visit details, medical conditions, and new prescriptions in each

patient’s analysis window. We used the Python package XGBoost to

construct the model, using 200 features in total. This is a smaller

number of features than the original model’s 924; in testing we

found that performance is not impacted by limiting to the top 200

features, making this change desirable from the standpoint of com-

putational efficiency, shareability, and model explainability. Cate-

gorical features were one-hot encoded. Age and healthcare visit

rates were treated as continuous variables, and diagnoses and pre-

scription drugs were modeled as binary features. Model hyperpara-

meters were tuned using GridSearchCV (scikit-learn), with 10-fold

cross-validation, set to optimize the area under the receiver operat-

ing characteristic curve (AUROC). We trained each model using 10-

fold cross-validation, repeated 5 times.3

Translating the model to the All of Us EHR data

repository
Because N3C is built using the Observational Medical Outcomes

Partnership (OMOP) common data model, the N3C model can be

run against any other OMOP database, aiding with transparency,

reproducibility, and external validation efforts. Like N3C, the NIH

All of Us (AoU) study collects EHR data from over 50 healthcare

provider organizations in the OMOP format, and is an effective test

bed for our model. Participants over 18 years of age are enrolled in
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AoU after an informed consent process from a direct volunteer plat-

form or healthcare provider organizations, which compose the AoU

Research Program network. A detailed description of AoU has been

published elsewhere.8 For this study, we used the AoU Controlled Tier

Dataset version 6 (C2022Q2R2 Curated Data Repository) available to

registered users on AoU’s Researcher Workbench, a secure cloud-based

platform. This dataset includes longitudinal EHR data from partici-

pants who were enrolled from May 30, 2018 to January 1, 2022.

The AoU team used N3C’s open-source model code11 to repli-

cate N3C’s model in their environment, using AoU data. The N3C

and AoU data teams met on a weekly basis for 12 weeks in order to

plan, share knowledge, and troubleshoot during implementation.

Required efforts included programming language translation (from

N3C’s PySpark and Spark SQL to AoU’s Python [pandas] and Goo-

gle BigQuery), comparing base population characteristics, and align-

ing assumptions about the underlying data and their meaning. Links

to the AoU-translated version of N3C’s code are available in Supple-

mental Methods.

RESULTS

When the model is run on the N3C population qualifying for the

base inclusion criteria (n¼2 465 242; see Materials and Methods),

each patient is assigned a predicted probability of Long COVID. We

replicated this process on the AoU population qualifying for the

base inclusion criteria (n¼8998, out of approximately 258 000

AoU participants with available EHR data). The version of the AoU

data (C2022Q2R2) used for this work contains 40 patients with a

U09.9 code, 30 of whom pass the initial inclusion criteria. The All

of Us team ran N3C’s pre-trained model in the AoU data without

retraining, thus enabling us to assess the performance of the model

developed using the N3C data. The distribution of predicted proba-

bilities of Long COVID across the populations of both repositories

is shown in Figure 1.

Interestingly, the AoU data have a greater proportion of patients

with the highest scores, and a lower proportion of patients with the

lowest scores. Differences in the underlying data, in both size and

context, likely contribute to these differences (see Discussion).

Figure 1. Distribution of predicted probability of Long COVID across the (A) N3C and (B) AoU base populations. About 16.0% of qualifying SARS-CoV-2 positive

N3C patients and 34.0% of qualifying SARS-CoV-2 positive AoU patients have predicted probabilities �0.5.
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https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad077#supplementary-data


Tables 1 and 2 show a demographic breakdown of the model-

eligible base population of both repositories, stratified by binned

predicted probabilities.

Note the distinct demographic differences between N3C and

AoU patients. N3C sites submit data for all SARS-CoV-2-positive

patients in their EHR warehouses, along with matched controls,

whereas AoU is a consented patient cohort whose enrollment aims

specifically emphasize diversity.12

Figure 2 shows the Shapley values for feature importance during

the training of the updated N3C ML model. Important features

include patient age, dyspnea, fatigue, and other diagnosis and

medication information available within the EHR. Table 3 com-

pares the results of running the trained model in the N3C and AoU

data, respectively.

DISCUSSION

This work resulted in successful translation of the N3C Long

COVID ML-based phenotype to the AoU environment. Through

our teams’ collaborative work, we also gained an understanding of

the complexities of sharing machine learning-based phenotypes for

Table 2. Demographic breakdown of the AoU population scored by the model, stratified by model score

Model score <0.50 Model score between 0.50 and 0.75 Model score >0.75

n¼ 5937 n¼ 1218 n¼ 1843

Sex (%)

Female 4188 (70.5) 747 (61.3) 1093 (59.3)

Male 1595 (26.9) 443 (36.4) 702 (38.1)

Other/unknown 154 (2.6) 28 (2.3) 48 (2.6)

Race (%)

Asian 100–130 <20 20–40

Black 1249 (21.0) 280 (23.0) 465 (25.2)

Hawaiian/Pac Isldr. <20 <20 <20

White 2879 (48.5) 538 (44.2) 776 (42.1)

Other 125 (2.1) 29 (2.4) 32 (1.7)

Unknown 1553 (26.2) 353 (29.0) 544 (29.5)

Ethnicity (%)

Hispanic/Latino 1421 (23.9) 322 (26.4) 510 (27.7)

Not Hispanic/Latino 4270 (71.9) 850 (69.8) 1249 (67.8)

Unknown 246 (4.1) 46 (3.8) 84 (4.6)

Age group (%)

18–45 1929 (32.5) 311 (25.5) 415 (22.5)

46–65 2515 (42.4) 538 (44.2) 848 (46.0)

66þ 1493 (25.1) 369 (30.3) 580 (31.5)

Note: Counts displayed as a range are required to comply with AoU’s policy preventing recalculation of small cell sizes.

Table 1. Demographic breakdown of the N3C population scored by the model, stratified by model score

Model score <0.50 Model score between 0.50 and 0.75 Model score >0.75

n¼ 2 071 869 n¼ 216 949 n¼ 176 424

Sex (%)

Female 1 217 052 (58.7) 146 706 (67.6) 120 840 (68.5)

Male 853 811 (41.2) 70 214 (32.4) 55 563 (31.5)

Other/unknown 1006 (0.0) 29 (0.0) 21 (0.0)

Race (%)

Asian 41 915 (2.0) 4537 (2.1) 3394 (1.9)

Black 277 395 (13.4) 34 604 (16.0) 29 388 (16.7)

Hawaiian/Pac Isldr. 3974 (0.2) 487 (0.2) 371 (0.2)

White 1 494 592 (72.2) 153 956 (71.0) 124 452 (70.6)

Other 64 561 (3.1) 3789 (1.7) 2915 (1.7)

Unknown 188 114 (9.1) 19 405 (9.0) 15 724 (8.9)

Ethnicity (%)

Hispanic/Latino 232 263 (11.2) 24 139 (11.1) 18 645 (10.6)

Not Hispanic/Latino 1 557 107 (75.2) 162 284 (74.8) 130 641 (74.0)

Unknown 282 499 (13.6) 30 526 (14.1) 27 138 (15.4)

Age group (%)

18–45 1 031 578 (49.8) 67 355 (31.0) 48 245 (27.3)

46–65 666 967 (32.2) 89 430 (41.2) 76 105 (43.1)

66þ 373 324 (18.0) 60 164 (27.7) 52 074 (29.5)



reuse, and developed methods for overcoming many of those

challenges.

Challenges and opportunities in sharing ML models
Open-source software is a key component of open science, but its

existence alone does not equate to reusability. Numerous exam-

ples—and calls to action—exist regarding the need to de-black-box

artificial intelligence and ML algorithms.13,14 For computable phe-

notypes, even seemingly simple rule-based phenotypes are complex

compendiums of codes from different sources such as ICD-10 and

CPT, inclusion/exclusion criteria, and scripts that make it challeng-

ing to reliably execute across systems. A recent manuscript has docu-

mented the significant lack of interoperability across studies.15

In order to truly promote reuse, code must be clearly docu-

mented and thoroughly commented, ideally with sharing in mind

from the start. For this reason, the GitHub repository for the N3C

Long COVID phenotype11 includes features such as README files

in each subfolder, code and folders organized in numbered steps,

and heavy commenting. However, running a shared phenotype from

start to finish with no errors still does not guarantee faithful transla-

tion. Rather, the context and meaning of the underlying data must

be known and described along with the code. In the context of an

ML-based phenotype, the challenges are even greater than in a rule-

based context. Not only do local code and common data model

mappings vary, but there are a much greater number of computa-

tional resources utilized. Further, it is almost certain that popula-

tions from different institutions will be dissimilar, requiring

understanding of inherent differences and selection biases in order

to properly interpret and contextualize results. Our respective

teams’ weekly meetings were used to convey this additional context,

and proved to be an ideal venue to convey complexities that would

be difficult to anticipate when writing documentation.

Our teams also overcame multiple challenges in the technical

aspects of model translation, including converting N3C’s code from

PySpark and Spark SQL to Python (pandas) and Google BigQuery

syntax. Skilled programmers from both the N3C and AoU teams

were required to execute this process accurately. Once AoU

Figure 2. Shapley plot of the top 25 features of the updated N3C model. The color of each point represents the importance of each feature in determining the pre-

dicted probability for a given patient. Features with points to the left of the center line are more likely to contribute to a lower predicted probability of Long COVID;

features with points to the right are more likely to contribute to a higher predicted probability.



developers translated N3C’s code, the translated versions were

uploaded to N3C’s GitHub via pull requests, enabling others with

the same translation needs to leverage AoU’s work.

Comparing model results in AoU versus N3C
Though both N3C and AoU use the OMOP data model, our under-

lying populations differ significantly (see Tables 1 and 2). Moreover,

the number of patients with recorded SARS-CoV-2 infections in the

AoU database is much smaller than N3C (8998 versus 2 077 866),

and the population with a U09.9 diagnosis code is smaller still (30

versus 13 990). Because N3C’s model was pre-trained on N3C’s

larger population, the fact that the AoU has a much smaller eligible

cohort did not impact AoU’s ability to run the model—however, the

differences in cohort size may explain some of the differences we see

in our results. A relative lack of patients with low scores in the AoU

cohort could be a reflection of the overall increased health system

engagement of the typical AoU affirmative enrollee, compared to

the all-comer waiver of consent cohort reflected in N3C. This may

also explain the higher numbers of AoU patients with high scores, as

outpatient utilization rates are an important model feature and may

have outsize influence among the care-engaged AoU enrollees. This

could be validly interpreted as a mark against the generalizability of

the N3C ML model to a consented cohort, revealed via this transla-

tion exercise.

Another major difference between N3C and AoU’s data was the

presence or absence of the model’s top features. Because the model

was trained on N3C data, the importance of the top 200 features (as

measured by Shapley value) was determined from the variables

present in the N3C data. Even with a shared data model, there is no

guarantee that all features from the training data will be present in

another data repository. In our case, AoU’s cohort of 8998 eligible

patients lacked coverage for 39 features of N3C’s top 200. This may

be the result of (1) coding idiosyncrasies among contributing sites,

which differ between N3C and AoU; (2) absence of low-prevalence

concepts in the smaller AoU cohort; or (3) the shorter pandemic-era

time window available in AoU. Two missing features, “tachycardia”

and “diarrhea,” are among the top 25 most important features from

the N3C model (see Figure 2)—these and other missing features may

have also been a contributor to result differences.

A limitation of this work is its restriction to adult patients. We

fully recognize the burden of Long COVID on the pediatric popula-

tion—however, Long COVID appears to present differently in chil-

dren, and these distinctions likely necessitate one or more separate

models.16 We should note that this exercise in ML-based phenotype

reuse is not, and was not intended to be a validation of the accuracy

of the phenotype. ML-based computable phenotypes present chal-

lenges with performance assessment,17 and the challenge is even

greater in the case of a new disease like Long COVID, where few

concrete diagnostic guidelines or gold standards exist. For this

effort, performance assessment was particularly challenging due to

the small number of U09.9 patients in the AoU dataset. Long

COVID in particular introduces additional complexities, as the list

of possible Long COVID symptoms is lengthy, heterogeneous, and

has significant overlap with many other conditions.1 Validation of

this phenotype will be the subject of future work, requiring chart

review and alignment with emerging biomarkers.

CONCLUSION

Through this effort, we have demonstrated the transfer of an ML-

based phenotype from one multi-institutional data repository to

another. This work generated a set of principles applicable to other

ML translation efforts including: (1) Leverage open-source code and

a common data model that is shared among all participants; (2)

Convene small teams integrating methods and programming experts

from each participating group, and encourage those teams to have

regular working sessions during the translation and testing process;

and (3) Document code far above the bare minimum, including

plenty of detail about assumptions, data cleaning steps, and derived

variables and well-written, stepwise instructions. This workflow

should be translatable to other phenotyping use cases, and will

hopefully encourage more research teams to decrease rework and

promote open science by sharing phenotyping and other data manip-

ulation code in this manner.

FUNDING

This research was funded by the National Institutes of Health (NIH)

Agreement OTA OT2HL161847 as part of the Researching COVID to

Enhance Recovery (RECOVER) research program, as well as CD2H—

The National COVID Cohort Collaborative (N3C) U24TR002306.

The All of Us Research Program is supported by the National

Institutes of Health, Office of the Director: Regional Medical Centers

(1 OT2 OD026549; 1 OT2 OD026554; 1 OT2 OD026557; 1 OT2

OD026556; 1 OT2 OD026550; 1 OT2 OD 026552; 1 OT2

OD026553; 1 OT2 OD026548; 1 OT2 OD026551; 1 OT2

OD026555; IAA: AOD21037, AOD22003, AOD16037,

AOD21041), Federally Qualified Health Centers (HHSN

263201600085U), Data and Research Center (5 U2C OD023196),

Biobank (1 U24 OD023121), The Participant Center (U24

OD023176), Participant Technology Systems Center (1 U24

OD023163), Communications and Engagement (3 OT2 OD023205;

3 OT2 OD023206), and Community Partners (1 OT2 OD025277; 3

OT2 OD025315; 1 OT2 OD025337; 1 OT2 OD025276).

AUTHOR CONTRIBUTIONS

Manuscript drafting: ERP, ATG, MC, HM, and MH. Data analysis:

ERP, ATG, MC, SG, HM, and WQW. Program leadership: ERP, RM,

CGC, MH, PAH, MB, and CL. Final manuscript approval: ERP,

ATG, MC, SG, HM, WQW, EK, PAH, MB, CL, CGC, RM, and MH.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.

ACKNOWLEDGMENTS

This study is part of the NIH Researching COVID to Enhance
Recovery (RECOVER) Initiative, which seeks to understand, treat,

Table 3. Comparison of results across N3C and AoU data

Metric N3C All of Us

n qualifying for model inclusion criteria 2 077 866 8998

n qualifying for model inclusion criteria with

U09.9 label

13 990 30

AUROC 0.83 0.72

Number of features 200 161

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad077#supplementary-data


and prevent the post-acute sequelae of SARS-CoV-2 infection
(PASC). For more information on RECOVER, visit https://recover-

covid.org/. We would like to thank the National Community
Engagement Group (NCEG), all patient, caregiver, and community

representatives, and all the participants enrolled in the RECOVER
Initiative.

The analyses described in this publication were conducted with data

or tools accessed through the NCATS N3C Data Enclave (cov-
id.cd2h.org/enclave). This research was possible because of the
patients whose information is included within the data from partici-

pating organizations (covid.cd2h.org/dtas) and the organizations
and scientists (covid.cd2h.org/duas) who have contributed to the

on-going development of this community resource. The N3C data
transfer to NCATS is performed under Johns Hopkins University
Reliance Protocol # IRB00249128 or individual site agreements

with NIH. The N3C Data Enclave is managed under the authority
of the NIH; information can be found at https://ncats.nih.gov/n3c/

resources. The work was performed under DUR RP-5677B5.

Authorship was determined using ICMJE recommendations. The
content is solely the responsibility of the authors and does not neces-

sarily represent the official views of the National Institutes of
Health, N3C, or RECOVER.

The All of Us Research Program would not be possible without the

partnership of its participants.

We also acknowledge the following institutions whose data are
released or pending in N3C:

Advocate Health Care Network—UL1TR002389: The Institute for

Translational Medicine (ITM) • Boston University Medical Cam-
pus—UL1TR001430: Boston University Clinical and Translational

Science Institute • Brown University—U54GM115677: Advance
Clinical Translational Research (Advance-CTR) • Carilion Clinic—
UL1TR003015: iTHRIV Integrated Translational health Research

Institute of Virginia • Charleston Area Medical Center—
U54GM104942: West Virginia Clinical and Translational Science
Institute (WVCTSI) • Children’s Hospital Colorado—

UL1TR002535: Colorado Clinical and Translational Sciences Insti-
tute • Columbia University Irving Medical Center—UL1TR001873:

Irving Institute for Clinical and Translational Research • Duke Uni-
versity—UL1TR002553: Duke Clinical and Translational Science
Institute • George Washington Children’s Research Institute—

UL1TR001876: Clinical and Translational Science Institute at
Children’s National (CTSA-CN) • George Washington University—

UL1TR001876: Clinical and Translational Science Institute at
Children’s National (CTSA-CN) • Indiana University School of
Medicine—UL1TR002529: Indiana Clinical and Translational Sci-

ence Institute • Johns Hopkins University—UL1TR003098: Johns
Hopkins Institute for Clinical and Translational Research • Loyola

Medicine—Loyola University Medical Center • Loyola University
Medical Center—UL1TR002389: The Institute for Translational
Medicine (ITM) • Maine Medical Center—U54GM115516: North-

ern New England Clinical & Translational Research (NNE-CTR)
Network • Massachusetts General Brigham—UL1TR002541: Har-

vard Catalyst • Mayo Clinic Rochester—UL1TR002377: Mayo
Clinic Center for Clinical and Translational Science (CCaTS) • Med-
ical University of South Carolina—UL1TR001450: South Carolina

Clinical & Translational Research Institute (SCTR) • Montefiore
Medical Center—UL1TR002556: Institute for Clinical and Transla-
tional Research at Einstein and Montefiore • Nemours—

U54GM104941: Delaware CTR ACCEL Program • NorthShore
University HealthSystem—UL1TR002389: The Institute for Trans-

lational Medicine (ITM) • Northwestern University at Chicago—
UL1TR001422: Northwestern University Clinical and Translational
Science Institute (NUCATS) • OCHIN—INV-018455: Bill and

Melinda Gates Foundation grant to Sage Bionetworks • Oregon

Health & Science University—UL1TR002369: Oregon Clinical and
Translational Research Institute • Penn State Health Milton S. Her-

shey Medical Center—UL1TR002014: Penn State Clinical and
Translational Science Institute • Rush University Medical Center—

UL1TR002389: The Institute for Translational Medicine (ITM) •
Rutgers, The State University of New Jersey—UL1TR003017: New
Jersey Alliance for Clinical and Translational Science • Stony Brook

University—U24TR002306 • The Ohio State University—
UL1TR002733: Center for Clinical and Translational Science • The

State University of New York at Buffalo—UL1TR001412: Clinical
and Translational Science Institute • The University of Chicago—
UL1TR002389: The Institute for Translational Medicine (ITM) •

The University of Iowa—UL1TR002537: Institute for Clinical and
Translational Science • The University of Miami Leonard M. Miller

School of Medicine—UL1TR002736: University of Miami Clinical
and Translational Science Institute • The University of Michigan at
Ann Arbor—UL1TR002240: Michigan Institute for Clinical and

Health Research • The University of Texas Health Science Center at
Houston—UL1TR003167: Center for Clinical and Translational
Sciences (CCTS) • The University of Texas Medical Branch at Gal-

veston—UL1TR001439: The Institute for Translational Sciences •
The University of Utah—UL1TR002538: Uhealth Center for Clini-

cal and Translational Science • Tufts Medical Center—
UL1TR002544: Tufts Clinical and Translational Science Institute •
Tulane University—UL1TR003096: Center for Clinical and Trans-

lational Science • University Medical Center New Orleans—
U54GM104940: Louisiana Clinical and Translational Science (LA

CaTS) Center • University of Alabama at Birmingham—
UL1TR003096: Center for Clinical and Translational Science • Uni-
versity of Arkansas for Medical Sciences—UL1TR003107: UAMS

Translational Research Institute • University of Cincinnati—
UL1TR001425: Center for Clinical and Translational Science and

Training • University of Colorado Denver, Anschutz Medical Cam-
pus—UL1TR002535: Colorado Clinical and Translational Sciences
Institute • University of Illinois at Chicago—UL1TR002003: UIC

Center for Clinical and Translational Science • University of Kansas
Medical Center—UL1TR002366: Frontiers: University of Kansas
Clinical and Translational Science Institute • University of Ken-

tucky—UL1TR001998: UK Center for Clinical and Translational
Science • University of Massachusetts Medical School Worcester—

UL1TR001453: The UMass Center for Clinical and Translational
Science (UMCCTS) • University of Minnesota—UL1TR002494:
Clinical and Translational Science Institute • University of Missis-

sippi Medical Center—U54GM115428: Mississippi Center for Clin-
ical and Translational Research (CCTR) • University of Nebraska

Medical Center—U54GM115458: Great Plains IDeA-Clinical &
Translational Research • University of North Carolina at Chapel
Hill—UL1TR002489: North Carolina Translational and Clinical

Science Institute • University of Oklahoma Health Sciences Cen-
ter—U54GM104938: Oklahoma Clinical and Translational Science

Institute (OCTSI) • University of Rochester—UL1TR002001: UR

Clinical & Translational Science Institute • University of Southern
California—UL1TR001855: The Southern California Clinical and

Translational Science Institute (SC CTSI) • University of Vermont—
U54GM115516: Northern New England Clinical & Translational
Research (NNE-CTR) Network • University of Virginia—

UL1TR003015: iTHRIV Integrated Translational health Research
Institute of Virginia • University of Washington—UL1TR002319:

Institute of Translational Health Sciences • University of Wisconsin-
Madison—UL1TR002373: UW Institute for Clinical and Transla-
tional Research • Vanderbilt University Medical Center—

UL1TR002243: Vanderbilt Institute for Clinical and Translational
Research • Virginia Commonwealth University—UL1TR002649: C.

Kenneth and Dianne Wright Center for Clinical and Translational
Research • Wake Forest University Health Sciences—
UL1TR001420: Wake Forest Clinical and Translational Science

Institute • Washington University in St. Louis—UL1TR002345:

https://recovercovid.org/
https://recovercovid.org/
https://ncats.nih.gov/n3c/resources
https://ncats.nih.gov/n3c/resources


Institute of Clinical and Translational Sciences • Weill Medical Col-
lege of Cornell University—UL1TR002384: Weill Cornell Medicine

Clinical and Translational Science Center • West Virginia Univer-
sity—U54GM104942: West Virginia Clinical and Translational Sci-

ence Institute (WVCTSI) • Icahn School of Medicine at Mount
Sinai—UL1TR001433: ConduITS Institute for Translational Scien-
ces • University of California, Davis—UL1TR001860: UCDavis

Health Clinical and Translational Science Center • University of
California, Irvine—UL1TR001414: The UC Irvine Institute for Clin-

ical and Translational Science (ICTS) • University of California, Los
Angeles—UL1TR001881: UCLA Clinical Translational Science
Institute • University of California, San Diego—UL1TR001442: Alt-

man Clinical and Translational Research Institute • University of
California, San Francisco—UL1TR001872: UCSF Clinical and

Translational Science Institute • Arkansas Children’s Hospital—
UL1TR003107: UAMS Translational Research Institute • Baylor
College of Medicine—None (Voluntary) • Cincinnati Children’s

Hospital Medical Center—UL1TR001425: Center for Clinical and
Translational Science and Training • Loyola University Chicago—
UL1TR002389: The Institute for Translational Medicine (ITM) •

Medical College of Wisconsin—UL1TR001436: Clinical and Trans-
lational Science Institute of Southeast Wisconsin • MetroHealth—

None (Voluntary) • NYU Langone Medical Center—
UL1TR001445: Langone Health’s Clinical and Translational Sci-
ence Institute • Ochsner Medical Center—U54GM104940: Louisi-

ana Clinical and Translational Science (LA CaTS) Center •
Regenstrief Institute—UL1TR002529: Indiana Clinical and Transla-

tional Science Institute • University of Florida—UL1TR001427: UF
Clinical and Translational Science Institute.

CONFLICT OF INTEREST STATEMENT

None declared.

DATA AVAILABILITY STATEMENT

N3C/RECOVER: The N3C Data Enclave is managed under the

authority of the NIH; information can be found at ncats.nih.gov/n3c/

resources. Enclave data are protected, and can be accessed for COVID-

related research with an approved (1) IRB protocol and (2) Data Use

Request (DUR). A detailed accounting of data protections and access

tiers is found in.1 Enclave and data access instructions can be found at

https://covid.cd2h.org/for-researchers; all code used to produce the

analyses in this manuscript is available within the N3C Enclave to users

with valid login credentials to support reproducibility.

All of Us: To ensure privacy of participants, All of Us Research

Program data used for this study are available to approved research-

ers following registration, completion of ethics training, and attesta-

tion of a data use agreement through the All of Us Research

Workbench platform, which can be accessed via https://workbench.

researchallofus.org/login.

REFERENCES

1. A Clinical Case Definition of Post COVID-19 Condition by a Delphi Con-

sensus, 6 October 2021. 2021. https://www.who.int/publications/i/item/

WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-

2021.1. Accessed July 18, 2022.

2. Ledford H. How Common is Long COVID? Why Studies Give Different

Answers. London: Nature Publishing Group UK; 2022. doi:10.1038/

d41586-022-01702-2.

3. Pfaff ER, Girvin AT, Bennett TD, et al. Identifying who has long COVID

in the USA: a machine learning approach using N3C data. Lancet Digit

Health 2022; 4: e532–41.

4. Hill E, Mehta H, Sharma S, et al. Risk factors associated with post-acute

sequelae of SARS-CoV-2 in an EHR cohort: a national COVID cohort col-

laborative (N3C) analysis as part of the NIH RECOVER program. medR-

xiv. 2022;2022.08.15.22278603. doi:10.1101/2022.08.15.22278603.

5. Daniel Brannock M, Chew RF, Preiss AJ, et al. Long COVID risk and pre-

COVID vaccination: an EHR-based cohort study from the recover pro-

gram. medRxiv. 2022;2022.10.06.22280795. doi:10.1101/2022.10.06.

22280795.

6. Sidky H, Sahner DK, Girvin AT, et al. Assessing the effect of selective sero-

tonin reuptake inhibitors in the prevention of post-acute sequelae of

COVID-19. medRxiv. 2022;2022.11.09.22282142. doi:10.1101/

2022.11.09.22282142.

7. Mo H, Thompson WK, Rasmussen LV, et al. Desiderata for computable

representations of electronic health records-driven phenotype algorithms.

J Am Med Inform Assoc 2015; 22: 1220–30.

8. The All of Us Research Program Investigators. The ‘all of us’ research pro-

gram. N Engl J Med 2019; 381: 668–76.

9. Pfaff ER, Girvin AT, Gabriel DL, et al. Synergies between centralized

and federated approaches to data quality: a report from the national

COVID cohort collaborative. J Am Med Inform Assoc 2021; 29:

609–18.

10. Haendel MA, Chute CG, Bennett TD, et al. The National COVID Cohort

Collaborative (N3C): rationale, design, infrastructure, and deployment. J

Am Med Inform Assoc 2021; 28: 427–43.

11. NCTraCSIDSci/n3c-longcovid. GitHub. https://github.com/NCTraC-

SIDSci/n3c-longcovid. Accessed July 26, 2022.

12. Mapes BM, Foster CS, Kusnoor SV, et al. Diversity and inclusion for the

all of us research program: a scoping review. PLoS One 2020; 15:

e0234962.

13. Savage N. Breaking into the Black Box of Artificial Intelligence. London:

Nature Publishing Group UK; 2022. doi:10.1038/d41586-022-00858-1

14. [No title]. ACM Digital Library. https://doi.org/10.1145/3457607.

Accessed December 13, 2022.

15. Brandt PS, Kho A, Luo Y, et al. Characterizing variability of electronic

health record-driven phenotype definitions. J Am Med Inform Assoc

2022; 30: 427–37

16. Lorman V, Razzaghi H, Song X, et al. A machine learning-based pheno-

type for long COVID in children: an EHR-based study from the

RECOVER program. medRxiv. 2022;2022.12.22.22283791.

doi:10.1101/2022.12.22.22283791.

17. Bekker J, Davis J. Learning from positive and unlabeled data: a survey.

Mach Learn 2020; 109: 719–60.

https://covid.cd2h.org/for-researchers
https://workbench.researchallofus.org/login
https://workbench.researchallofus.org/login
https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1
https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1
https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1
https://doi.org/10.1038/d41586-022-01702-2
https://doi.org/10.1038/d41586-022-01702-2
https://doi.org/10.1101/2022.08.15.22278603
https://doi.org/10.1101/2022.10.06.22280795
https://doi.org/10.1101/2022.10.06.22280795
https://doi.org/10.1101/2022.11.09.22282142
https://doi.org/10.1101/2022.11.09.22282142
https://github.com/NCTraCSIDSci/n3c-longcovid
https://github.com/NCTraCSIDSci/n3c-longcovid
https://doi.org/10.1038/d41586-022-00858-1
https://doi.org/10.1145/3457607
https://doi.org/10.1101/2022.12.22.22283791

