5,344 research outputs found

    A Lagrangian Integrator for Planetary Accretion and Dynamics (LIPAD)

    Full text link
    We presented the first particle based, Lagrangian code that can follow the collisional/accretional/dynamical evolution of a large number of km-sized planetesimals through the entire growth process to become planets. We refer to it as the 'Lagrangian Integrator for Planetary Accretion and Dynamics' or LIPAD. LIPAD is built on top of SyMBA, which is a symplectic NN-body integrator. In order to handle the very large number of planetesimals required by planet formation simulations, we introduce the concept of a `tracer' particle. Each tracer is intended to represent a large number of disk particles on roughly the same orbit and size as one another, and is characterized by three numbers: the physical radius, the bulk density, and the total mass of the disk particles represented by the tracer. We developed statistical algorithms that follow the dynamical and collisional evolution of the tracers due to the presence of one another. The tracers mainly dynamically interact with the larger objects (`planetary embryos') in the normal N-body way. LIPAD's greatest strength is that it can accurately model the wholesale redistribution of planetesimals due to gravitational interaction with the embryos, which has recently been shown to significantly affect the growth rate of planetary embryos . We verify the code via a comprehensive set of tests which compare our results with those of Eulerian and/or direct N-body codes.Comment: Accepted to the Astronomical Journal. See http://www.boulder.swri.edu/~hal/LIPAD.html for more detail including animation

    Dimers on two-dimensional lattices

    Full text link
    We consider close-packed dimers, or perfect matchings, on two-dimensional regular lattices. We review known results and derive new expressions for the free energy, entropy, and the molecular freedom of dimers for a number of lattices including the simple-quartic (4^4), honeycomb (6^3), triangular (3^6), kagome (3.6.3.6), 3-12 (3.12^2) and its dual [3.12^2], and 4-8 (4.8^2) and its dual Union Jack [4.8^2] Archimedean tilings. The occurrence and nature of phase transitions are also analyzed and discussed.Comment: Typos corrections in Eqs. (28), (32) and (43

    Some conchological notes on Tasmanian mollusca

    Get PDF
    Tasmanian conchologists must feel proud of such a noble addition to their marine gasteropoda as Valuta roadknighti a, broken specimen, which must have been of truly magnificent proportions, 8in. in length by 6in. round, having been found in the neighbourhood of Swansea, East Coast, in 1894, but was not recognised by the finde

    Petroleum

    Get PDF
    Explores the strengths and weaknesses of origin theories of petroleum while also discussing the chemistry and process of producing oil in the United States

    New Brown Dwarfs and an Updated Initial Mass Function in Taurus

    Full text link
    I have performed a search for young low-mass stars and brown dwarfs (BDs) in 2 regions encompassing a total area of 4 deg^2 in the Taurus star-forming region, discovering 15 new members of Taurus. In addition, I present 7 new members outside of these areas from the initial stage of a survey of all of Taurus. These 22 objects exhibit spectral types of M4.5-M9.25 and masses of 0.3-0.015 M_sun according to the theoretical evolutionary models of Baraffe and Chabrier, 7 of which are likely to be BDs. Emission in H(alpha), He I, Ca II, [O I], and [S II] and excess emission in optical and near-IR bands among some of these objects suggest the presence of accretion, outflows, and circumstellar disks. The results from the 4 deg^2 survey have been combined with previous studies of Taurus to arrive at an IMF for a total area of 12.4 deg^2. As in the previous IMFs for Taurus, the updated IMF peaks at a higher mass (0.8 M_sun) than the mass functions in IC 348 and Orion (0.1-0.2 M_sun). Meanwhile, the deficit of BDs in Taurus appears to be less significant (x1.4-1.8) than found in earlier studies (x2) because of a slightly higher BD fraction in the new IMF for Taurus and a lower BD fraction in the new spectroscopic IMF for the Trapezium from Slesnick and coworkers. The spatial distribution of the low-mass stars and BDs discovered in the two new survey areas closely matches that of the more massive members. Thus, on the degree size scales (~3 pc) probed to date, there is no indication that BDs form through ejection.Comment: 35 pages, The Astrophysical Journal, 2004, v617 (December 20

    Co-orbital Oligarchy

    Get PDF
    We present a systematic examination of the changes in semi-major axis caused by the mutual interactions of a group of massive bodies orbiting a central star in the presence of eccentricity dissipation. For parameters relevant to the oligarchic stage of planet formation, dynamical friction keeps the typical eccentricities small and prevents orbit crossing. Interactions at impact parameters greater than several Hill radii cause the protoplanets to repel each other; if the impact parameter is instead much less than the Hill radius, the protoplanets shift slightly in semi-major axis but remain otherwise unperturbed. If the orbits of two or more protoplanets are separated by less than a Hill radius, they are each pushed towards an equilibrium spacing between their neighbors and can exist as a stable co-orbital system. In the shear-dominated oligarchic phase of planet formation we show that the feeding zones contain several oligarchs instead of only one. Growth of the protoplanets in the oligarchic phase drives the disk to an equilibrium configuration that depends on the mass ratio of protoplanets to planetesimals, Ī£/Ļƒ\Sigma/\sigma. Early in the oligarchic phase, when Ī£/Ļƒ\Sigma/\sigma is low, the spacing between rows of co-orbital oligarchs are about 5 Hill radii wide, rather than the 10 Hill radii cited in the literature. It is likely that at the end of oligarchy the average number of co-orbital oligarchs is greater than unity. In the outer solar system this raises the disk mass required to form the ice giants. In the inner solar system this lowers the mass of the final oligarchs and requires more giant impacts than previously estimated. This result provides additional evidence that Mars is not an untouched leftover from the oligarchic phase, but must be composed of several oligarchs assembled through giant impacts.Comment: 10 pages, 8 figures. v2 includes major revisions including additional results motivated by the referee's comment

    Observed Binary Fraction Sets Limits on the Extent of Collisional Grinding in the Kuiper Belt

    Full text link
    The size distribution in the cold classical Kuiper belt can be approximated by two idealized power laws: one with steep slope for radii R>R* and one with shallow slope for R<R*, where R*~25-50 km. Previous works suggested that the SFD roll-over at R* can be the result of extensive collisional grinding in the Kuiper belt that led to the catastrophic disruption of most bodies with R<R*. Here we use a new code to test the effect of collisions in the Kuiper belt. We find that the observed roll-over could indeed be explained by collisional grinding provided that the initial mass in large bodies was much larger than the one in the present Kuiper belt, and was dynamically depleted. In addition to the size distribution changes, our code also tracks the effects of collisions on binary systems. We find that it is generally easier to dissolve wide binary systems, such as the ones existing in the cold Kuiper belt today, than to catastrophically disrupt objects with R~R*. Thus, the binary survival sets important limits on the extent of collisional grinding in the Kuiper belt. We find that the extensive collisional grinding required to produce the SFD roll-over at R* would imply a strong gradient of the binary fraction with R and separation, because it is generally easier to dissolve binaries with small components and/or those with wide orbits. The expected binary fraction for R<R* is <0.1. The present observational data do not show such a gradient. Instead, they suggest a large binary fraction of ~0.4 for R=30-40 km. This may indicate that the roll-over was not produced by disruptive collisions, but is instead a fossil remnant of the KBO formation process.Comment: The Astronomical Journal, in pres

    A New interpretation of MOND based on Mach principle and an Unruh like effect

    Full text link
    A new interpretation is introduced for MOND based on the Sciama's interpretation of Mach principle and an Unruh like effect, in the context of a generalized equivalence principle. It is argued that in a locally accelerated frame with acceleration aa the appearance of a Rindler horizon may give rise to a constant acceleration a0a_0 as the local properties of cosmological horizon or Hubble length. The total gravitational acceleration inside this frame becomes the combination of aa with a0a_0. For aā‰«a0a\gg a_0, the conventional gravitational mass mgm_g interacts with the dominant acceleration as mgam_g a and application of Sciama's interpretation leads to the standard Newtonian dynamics. For aā‰Ŗa0a\ll a_0, however, a reduced gravitational mass mĖ‰g\bar{m}_g interacts with the dominant acceleration as mĖ‰ga0\bar{m}_g a_0 and the application of Sciama's interpretation on this reduced gravitational mass leads to MOND. This introduces a third proposal for MOND: {\it The modification of gravitational mass}.Comment: 11 pages, throughout revisio
    • ā€¦
    corecore