I have performed a search for young low-mass stars and brown dwarfs (BDs) in
2 regions encompassing a total area of 4 deg^2 in the Taurus star-forming
region, discovering 15 new members of Taurus. In addition, I present 7 new
members outside of these areas from the initial stage of a survey of all of
Taurus. These 22 objects exhibit spectral types of M4.5-M9.25 and masses of
0.3-0.015 M_sun according to the theoretical evolutionary models of Baraffe and
Chabrier, 7 of which are likely to be BDs. Emission in H(alpha), He I, Ca II,
[O I], and [S II] and excess emission in optical and near-IR bands among some
of these objects suggest the presence of accretion, outflows, and circumstellar
disks. The results from the 4 deg^2 survey have been combined with previous
studies of Taurus to arrive at an IMF for a total area of 12.4 deg^2. As in the
previous IMFs for Taurus, the updated IMF peaks at a higher mass (0.8 M_sun)
than the mass functions in IC 348 and Orion (0.1-0.2 M_sun). Meanwhile, the
deficit of BDs in Taurus appears to be less significant (x1.4-1.8) than found
in earlier studies (x2) because of a slightly higher BD fraction in the new IMF
for Taurus and a lower BD fraction in the new spectroscopic IMF for the
Trapezium from Slesnick and coworkers. The spatial distribution of the low-mass
stars and BDs discovered in the two new survey areas closely matches that of
the more massive members. Thus, on the degree size scales (~3 pc) probed to
date, there is no indication that BDs form through ejection.Comment: 35 pages, The Astrophysical Journal, 2004, v617 (December 20