50 research outputs found
The peer effect on pain tolerance
Accepted manuscript version, licensed CC BY-NC-ND 4.0. Published version available at https://doi.org/10.1515/sjpain-2018-0060 .Background and aims:
Twin studies have found that approximately half of the variance in pain tolerance can be explained by genetic factors, while shared family environment has a negligible effect. Hence, a large proportion of the variance in pain tolerance is explained by the (non-shared) unique environment. The social environment beyond the family is a potential candidate for explaining some of the variance in pain tolerance. Numerous individual traits have previously shown to be associated with friendship ties. In this study, we investigate whether pain tolerance is associated with friendship ties.
Methods:
We study the friendship effect on pain tolerance by considering data from the Tromsø Study: Fit Futures I, which contains pain tolerance measurements and social network information for adolescents attending first year of upper secondary school in the Tromsø area in Northern Norway. Pain tolerance was measured with the cold-pressor test (primary outcome), contact heat and pressure algometry. We analyse the data by using statistical methods from social network analysis. Specifically, we compute pairwise correlations in pain tolerance among friends. We also fit network autocorrelation models to the data, where the pain tolerance of an individual is explained by (among other factors) the average pain tolerance of the individualâs friends.
Results:
We find a significant and positive relationship between the pain tolerance of an individual and the pain tolerance of their friends. The estimated effect is that for every 1 s increase in friendsâ average cold-pressor tolerance time, the expected cold-pressor pain tolerance of the individual increases by 0.21 s (p-value: 0.0049, sample size n=997). This estimated effect is controlled for sex. The friendship effect remains significant when controlling for potential confounders such as lifestyle factors and test sequence among the students. Further investigating the role of sex on this friendship effect, we only find a significant peer effect of male friends on males, while there is no significant effect of friendsâ average pain tolerance on females in stratified analyses. Similar, but somewhat lower estimates were obtained for the other pain modalities.
Conclusions:
We find a positive and significant peer effect in pain tolerance. Hence, there is a significant tendency for students to be friends with others with similar pain tolerance. Sex-stratified analyses show that the only significant effect is the effect of male friends on males.
Implications:
Two different processes can explain the friendship effect in pain tolerance, selection and social transmission. Individuals might select friends directly due to similarity in pain tolerance, or indirectly through similarity in other confounding variables that affect pain tolerance. Alternatively, there is an influence effect among friends either directly in pain tolerance, or indirectly through other variables that affect pain tolerance. If there is indeed a social influence effect in pain tolerance, then the social environment can account for some of the unique environmental variance in pain tolerance. If so, it is possible to therapeutically affect pain tolerance through alteration of the social environment
Detecting climate adaptation with mobile network data in Bangladesh: anomalies in communication, mobility and consumption patterns during cyclone Mahasen
Large-scale data from digital infrastructure, like mobile phone networks, provides rich information on the behavior of millions of people in areas affected by climate stress. Using anonymized data on mobility and calling behavior from 5.1 million Grameenphone users in Barisal Division and Chittagong District, Bangladesh, we investigate the effect of Cyclone Mahasen, which struck Barisal and Chittagong in May 2013. We characterize spatiotemporal patterns and anomalies in calling frequency, mobile recharges, and population movements before, during and after the cyclone. While it was originally anticipated that the analysis might detect mass evacuations and displacement from coastal areas in the weeks following the storm, no evidence was found to suggest any permanent changes in population distributions. We detect anomalous patterns of mobility both around the time of early warning messages and the stormâs landfall, showing where and when mobility occurred as well as its characteristics. We find that anomalous patterns of mobility and calling frequency correlate with rainfall intensity (r = .75, p < 0.05) and use calling frequency to construct a spatiotemporal distribution of cyclone impact as the storm moves across the affected region. Likewise, from mobile recharge purchases we show the spatiotemporal patterns in peopleâs preparation for the storm in vulnerable areas. In addition to demonstrating how anomaly detection can be useful for modeling human adaptation to climate extremes, we also identify several promising avenues for future improvement of disaster planning and response activities
Reconstructing unseen transmission events to infer dengue dynamics from viral sequences.
For most pathogens, transmission is driven by interactions between the behaviours of infectious individuals, the behaviours of the wider population, the local environment, and immunity. Phylogeographic approaches are currently unable to disentangle the relative effects of these competing factors. We develop a spatiotemporally structured phylogenetic framework that addresses these limitations by considering individual transmission events, reconstructed across spatial scales. We apply it to geocoded dengue virus sequences from Thailand (Nâ=â726 over 18 years). We find infected individuals spend 96% of their time in their home community compared to 76% for the susceptible population (mainly children) and 42% for adults. Dynamic pockets of local immunity make transmission more likely in places with high heterotypic immunity and less likely where high homotypic immunity exists. Age-dependent mixing of individuals and vector distributions are not important in determining spread. This approach provides previously unknown insights into one of the most complex disease systems known and will be applicable to other pathogens
Modeling geographic vaccination strategies for COVID-19 in Norway.
Vaccination was a key intervention in controlling the COVID-19 pandemic globally. In early 2021, Norway faced significant regional variations in COVID-19 incidence and prevalence, with large differences in population density, necessitating efficient vaccine allocation to reduce infections and severe outcomes. This study explored alternative vaccination strategies to minimize health outcomes (infections, hospitalizations, ICU admissions, deaths) by varying regions prioritized, extra doses prioritized, and implementation start time. Using two models (individual-based and meta-population), we simulated COVID-19 transmission during the primary vaccination period in Norway, covering the first 7 months of 2021. We investigated alternative strategies to allocate more vaccine doses to regions with a higher force of infection. We also examined the robustness of our results and highlighted potential structural differences between the two models. Our findings suggest that early vaccine prioritization could reduce COVID-19 related health outcomes by 8% to 20% compared to a baseline strategy without geographic prioritization. For minimizing infections, hospitalizations, or ICU admissions, the best strategy was to initially allocate all available vaccine doses to fewer high-risk municipalities, comprising approximately one-fourth of the population. For minimizing deaths, a moderate level of geographic prioritization, with approximately one-third of the population receiving doubled doses, gave the best outcomes by balancing the trade-off between vaccinating younger people in high-risk areas and older people in low-risk areas. The actual strategy implemented in Norway was a two-step moderate level aimed at maintaining the balance and ensuring ethical considerations and public trust. However, it did not offer significant advantages over the baseline strategy without geographic prioritization. Earlier implementation of geographic prioritization could have more effectively addressed the main wave of infections, substantially reducing the national burden of the pandemic
Roles in networks
AbstractIn this paper we offer a topology-driven (ânaturalâ) definition of subclusters of an undirected graph or network. In addition we find rules for assigning unique roles (from a small set of possible roles) to each node in the network. Our approach is based on the use of a âsmoothâ index for well-connectedness (eigenvector centrality) which is computed for each node. This index, viewed as a height function, then guides the decomposition of the graph into regions (associated with local peaks of the index), and borders (valleys) between regions. We propose and compare two rules for assigning nodes to regions. We illustrate our approach with simple test graphs, and also by applying it to snapshots of the Gnutella peer-to-peer network from late 2001. This latter analysis suggests that our method implies novel ways of interpreting the notion of well-connectedness for a graph, as these snapshots represent very well connected networks. We argue that our approach is well suited for analyzing computer networks, towards the goal of enhancing their security
Considering clustering measures: third ties, means, and triplets
Measures that estimate the clustering coefficients of ego and overall social networks are important to social network studies. Existing measures differ in how they define and estimate triplet clustering with implications for how network theoretic properties are reflected. In this paper, we propose a novel definition of triplet clustering for weighted and undirected social networks that explicitly considers the relative strength of the tie connecting the two alters of the ego in the triplet. We argue that our proposed definition better reflects theorized effects of the important third tie in the social network literature. We also develop new methods for estimating triplet, local and global clustering. Three different types of mathematical means, i.e. arithmetic, geometric, and quadratic, are used to reflect alternative theoretical assumptions concerning the marginal effect of tie substitution