22 research outputs found

    In vitro and in silico analysis reveals an efficient algorithm to predict the splicing consequences of mutations at the 5′ splice sites

    Get PDF
    We have found that two previously reported exonic mutations in the PINK1 and PARK7 genes affect pre-mRNA splicing. To develop an algorithm to predict underestimated splicing consequences of exonic mutations at the 5′ splice site, we constructed and analyzed 31 minigenes carrying exonic splicing mutations and their derivatives. We also examined 189 249 U2-dependent 5′ splice sites of the entire human genome and found that a new variable, the SD-Score, which represents a common logarithm of the frequency of a specific 5′ splice site, efficiently predicts the splicing consequences of these minigenes. We also employed the information contents (Ri) to improve the prediction accuracy. We validated our algorithm by analyzing 32 additional minigenes as well as 179 previously reported splicing mutations. The SD-Score algorithm predicted aberrant splicings in 198 of 204 sites (sensitivity = 97.1%) and normal splicings in 36 of 38 sites (specificity = 94.7%). Simulation of all possible exonic mutations at positions −3, −2 and −1 of the 189 249 sites predicts that 37.8, 88.8 and 96.8% of these mutations would affect pre-mRNA splicing, respectively. We propose that the SD-Score algorithm is a practical tool to predict splicing consequences of mutations affecting the 5′ splice site

    Measurement data of masu salmon (Oncorhynchus masou) and Dolly Varden charr (Salvelinus malma)

    No full text
    Measurement data of masu salmon (Oncorhynchus masou) and Dolly Varden charr (Salvelinus malma). The salmon and charr were collected at the 13 tributaries of the Shari River system in the eastern part of Hokkaido Island, Japan

    Wild genes boost the survival of captive-bred individuals in the wild

    No full text
    Captive-breeding programs are actively engaged in conservation and resource enhancement for a variety of species around the world, yet captive-bred individuals often experience reduced fitness in the wild due to inbreeding and adaptation to captivity. Increasing wild-type genetic contributions has been proposed as one solution to this problem, but the demographic impacts of these contributions remain unclear. Using data from long-term mass-marking programs conducted by national hatcheries in Japan, we evaluated the effects of wild genes in the parental generation on the survival of captive-bred populations. Our results indicated that increasing the percentage of wild genes improves survival of captive-bred offspring in the wild in two salmonid species. These findings offer insights for future bioresource management efforts that use both wild and captive-bred individuals

    Data from: Adoption of alternative migratory tactics: a view from the ultimate mechanism and threshold trait changes in a salmonid fish

    No full text
    Partial migration, in which a portion of the population migrates while the rest of the population remains as residents, is a common form of migration. Alternative migratory tactics (AMTs) of partial migration are often determined by polygenic threshold traits. However, the ultimate mechanisms that drive inter-population variations in threshold traits are not well understood. We present a simple schematic model to explain how the threshold trait changes with fitness consequences under opposing natural and artificial selection forces. We conducted a field test to evaluate the effects of migration difficulty (as a natural selective force) and selective captive breeding (as an artificial selective force) on threshold traits of a partially migratory fish. Male masu salmon (Oncorhynchus masou) in the Shari River system have AMTs divided into three population categories of hatchery, wild/above the waterfall, and wild/below the waterfall (control). The wild/above the waterfall salmon live in a high-migration-cost situation, and the threshold trait changed in a direction that promoted residency. In hatchery salmon, which are produced by migrant-selective captive breeding, the threshold trait changed in a direction that promoted migration. In contrast, Dolly Varden charr (Salvelinus malma) displayed only resident tactics, and the threshold trait did not differ between the populations above and below the waterfall, indicating that environment did not explain the variation in the threshold trait. Our results support the model and suggest that opposing natural and artificial selection forces drive variations in the threshold traits and migratory patterns in the studied species. Our conceptual framework for the ultimate mechanism may help to better understand adoption of AMTs and production of diverse intraspecific traits in migratory animals

    Vulnerability to angling of wild rainbow trout and native masu salmon

    No full text

    Significance of Oligomeric and Fibrillar Species in Amyloidosis: Insights into Pathophysiology and Treatment

    No full text
    Amyloidosis is a term referring to a group of various protein-misfolding diseases wherein normally soluble proteins form aggregates as insoluble amyloid fibrils. How, or whether, amyloid fibrils contribute to tissue damage in amyloidosis has been the topic of debate. In vitro studies have demonstrated the appearance of small globular oligomeric species during the incubation of amyloid beta peptide (Aβ). Nerve biopsy specimens from patients with systemic amyloidosis have suggested that globular structures similar to Aβ oligomers were generated from amorphous electron-dense materials and later developed into mature amyloid fibrils. Schwann cells adjacent to amyloid fibrils become atrophic and degenerative, suggesting that the direct tissue damage induced by amyloid fibrils plays an important role in systemic amyloidosis. In contrast, there is increasing evidence that oligomers, rather than amyloid fibrils, are responsible for cell death in neurodegenerative diseases, particularly Alzheimer’s disease. Disease-modifying therapies based on the pathophysiology of amyloidosis have now become available. Aducanumab, a human monoclonal antibody against the aggregated form of Aβ, was recently approved for Alzheimer’s disease, and other monoclonal antibodies, including gantenerumab, solanezumab, and lecanemab, could also be up for approval. As many other agents for amyloidosis will be developed in the future, studies to develop sensitive clinical scales for identifying improvement and markers that can act as surrogates for clinical scales should be conducted

    Nucleic Acid-Based Therapeutic Approach for Spinal and Bulbar Muscular Atrophy and Related Neurological Disorders

    No full text
    The recent advances in nucleic acid therapeutics demonstrate the potential to treat hereditary neurological disorders by targeting their causative genes. Spinal and bulbar muscular atrophy (SBMA) is an X-linked and adult-onset neurodegenerative disorder caused by the expansion of trinucleotide cytosine-adenine-guanine repeats, which encodes a polyglutamine tract in the androgen receptor gene. SBMA belongs to the family of polyglutamine diseases, in which the use of nucleic acids for silencing a disease-causing gene, such as antisense oligonucleotides and small interfering RNAs, has been intensively studied in animal models and clinical trials. A unique feature of SBMA is that both motor neuron and skeletal muscle pathology contribute to disease manifestations, including progressive muscle weakness and atrophy. As both motor neurons and skeletal muscles can be therapeutic targets in SBMA, nucleic acid-based approaches for other motor neuron diseases and myopathies may further lead to the development of a treatment for SBMA. Here, we review studies of nucleic acid-based therapeutic approaches in SBMA and related neurological disorders and discuss current limitations and perspectives to apply these approaches to patients with SBMA

    Preclinical progression of neurodegenerative diseases

    No full text
    corecore