1,385 research outputs found
Topological effects at short antiferromagnetic Heisenberg chains
The manifestations of topological effects in finite antiferromagnetic
Heisenberg chains is examined by density matrix renormalization group technique
in this paper. We find that difference between integer and half-integer spin
chains shows up in ground state energy per site when length of spin chain is
longer than , where is a spin-spin correlation
length, for spin magnitude S up to 5/2. For open chains with spin magnitudes
to S=5, we verify that end states with fractional spin quantum numbers
exist and are visible even when the chain length is much smaller than the
correlation length . The end states manifest themselves in the structure
of the low energy excitation spectrum.Comment: 4 pages, 6 figure
A class of ansatz wave functions for 1D spin systems and their relation to DMRG
We investigate the density matrix renormalization group (DMRG) discovered by
White and show that in the case where the renormalization eventually converges
to a fixed point the DMRG ground state can be simply written as a ``matrix
product'' form. This ground state can also be rederived through a simple
variational ansatz making no reference to the DMRG construction. We also show
how to construct the ``matrix product'' states and how to calculate their
properties, including the excitation spectrum. This paper provides details of
many results announced in an earlier letter.Comment: RevTeX, 49 pages including 4 figures (macro included). Uuencoded with
uufiles. A complete postscript file is available at
http://fy.chalmers.se/~tfksr/prb.dmrg.p
Variational and DMRG studies of the Frustrated Antiferromagnetic Heisenberg S=1 Quantum Spin Chain
We study a frustrated antiferromagnetic isotropic Heisenberg chain
using a variational ansatz and the DMRG. At , there is a
disorder point of the second kind, marking the onset of incommensurate
correlations in the chain. At there is a Lifshitz point,
at which the excitation spectrum develops a doubly degenerate structure. These
points are the quantum remnants of the transition from antiferromagnetic to
spiral order in the classical frustrated chain. At there
is a first order phase transition from an AKLT phase to a next-nearest neighbor
generalization of the AKLT model. At the transition, the string order parameter
shows a discontinuous jump of 0.085 to 0; the correlation length and the gap
are both finite at the transition. The problem of edge states in open
frustrated chains is discussed at length.Comment: 37 pages, 14 figures, submitted to Phys.Rev.
Impurity state in Haldane gap for S=1 Heisenberg antiferromagnetic chain with bond doping
Using a new impurity density matrix renormalization group scheme, we
establish a reliable picture of how the low lying energy levels of a
Heisenberg antiferromagnetic chain change {\it quantitatively} upon bond
doping. A new impurity state gradually occurs in the Haldane gap as ,
while it appears only if with as . The
system is non-perturbative as . This explains the
appearance of a new state in the Haldane gap in a recent experiment on
YCaBaNiO [J.F. DiTusa, et al., Phys. Rev. Lett. 73 1857(1994)].Comment: 4 pages of uuencoded gzip'd postscrip
The spectral gap for some spin chains with discrete symmetry breaking
We prove that for any finite set of generalized valence bond solid (GVBS)
states of a quantum spin chain there exists a translation invariant
finite-range Hamiltonian for which this set is the set of ground states. This
result implies that there are GVBS models with arbitrary broken discrete
symmetries that are described as combinations of lattice translations, lattice
reflections, and local unitary or anti-unitary transformations. We also show
that all GVBS models that satisfy some natural conditions have a spectral gap.
The existence of a spectral gap is obtained by applying a simple and quite
general strategy for proving lower bounds on the spectral gap of the generator
of a classical or quantum spin dynamics. This general scheme is interesting in
its own right and therefore, although the basic idea is not new, we present it
in a system-independent setting. The results are illustrated with an number of
examples.Comment: 48 pages, Plain TeX, BN26/Oct/9
Frustrated antiferromagnetic quantum spin chains for spin length S > 1
We investigate frustrated antiferromagnetic Heisenberg quantum spin chains at
T=0 for S=3/2 and S=2 using the DMRG method. We localize disorder and Lifshitz
points, confirming that quantum disorder points can be seen as quantum remnants
of classical phase transitions. Both in the S=3/2 and the S=2 chain, we observe
the disappearance of effectively free S=1/2 and S=1 end spins respectively. The
frustrated spin chain is therefore a suitable system for clearly showing the
existence of free end spins S'=[S/2] also in half-integer antiferromagnetic
spin chains with S>1/2. We suggest that the first order transition found for
S=1 in our previous work is present in all frustrated spin chains with S>1/2,
characterized by the disappearance of effectively free end spins with S'=[S/2].Comment: 6 pages, 8 ps figures, uses RevTeX, submitted to PR
Searching for chiral logs in the static-light decay constant
Using the clover fermion action in unquenched QCD with pion masses as low as
420 MeV, we look for evidence for chiral logs in the static-light decay
constant. There is some evidence for a chiral log term, if the original static
theory of Eichten and Hill is used. However, the more precise data from the
static action of the ALPHA collaboration do not show any evidence for
non-linear dependence of the static-light decay constant on the light quark
mass. We make some comments on the connection between chiral perturbation
theory for decay constants of the pion and static-light meson
Pervasive and standalone computing: The perceptual effects of variable multimedia quality.
The introduction of multimedia on pervasive and mobile communication devices raises a number of perceptual quality issues, however, limited work has been done examining the 3-way interaction between use of equipment, quality of perception and quality of service. Our work measures levels of informational transfer (objective) and user satisfaction (subjective)when users are presented with multimedia video clips at three different frame rates, using four different display devices, simulating variation in participant mobility. Our results will show that variation in frame-rate does not impact a user’s level of information assimilation, however, does impact a users’ perception of multimedia video ‘quality’. Additionally, increased visual immersion can be used to increase transfer of video information, but can negatively affect the users’ perception of ‘quality’. Finally, we illustrate the significant affect of clip-content on the transfer of video, audio and textual information, placing into doubt the use of purely objective quality definitions when considering multimedia
presentations
Distribution of exchange energy in a bond-alternating S=1 quantum spin chain
The quasi-one-dimensional bond-alternating S=1 quantum antiferromagnet NTENP
is studied by single crystal inelastic neutron scattering. Parameters of the
measured dispersion relation for magnetic excitations are compared to existing
numerical results and used to determine the magnitude of bond-strength
alternation. The measured neutron scattering intensities are also analyzed
using the 1st-moment sum rules for the magnetic dynamic structure factor, to
directly determine the modulation of ground state exchange energies. These
independently determined modulation parameters characterize the level of spin
dimerization in NTENP. First-principle DMRG calculations are used to study the
relation between these two quantities.Comment: 10 pages, 10 figure
The Haldane gap for the S=2 antiferromagnetic Heisenberg chain revisited
Using the density matrix renormalization group (DMRG) technique, we carry out
a large scale numerical calculation for the S=2 antiferromagnetic Heisenberg
chain. Performing systematic scaling analysis for both the chain length and
the number of optimal states kept in the iterations , the Haldane gap
is estimated accurately as . Our systematic
analysis for the S=2 chains not only ends the controversies arising from
various DMRG calculations and Monte Carlo simulations, but also sheds light on
how to obtain reliable results from the DMRG calculations for other complicated
systems.Comment: 4 pages and 1 figur
- …
