123 research outputs found

    Assessment of turbulent blood flow and wall shear stress in aortic coarctation using image-based simulations

    Get PDF
    In this study, we analyzed turbulent flows through a phantom (a 180 degrees bend with narrowing) at peak systole and a patient-specific coarctation of the aorta (CoA), with a pulsating flow, using magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). For MRI, a 4D-flow MRI is performed using a 3T scanner. For CFD, the standard k - epsilon, shear stress transport k - omega, and Reynolds stress (RSM) models are applied. A good agreement between measured and simulated velocity is obtained for the phantom, especially for CFD with RSM. The wall shear stress (WSS) shows significant differences between CFD and MRI in absolute values, due to the limited near-wall resolution of MRI. However, normalized WSS shows qualitatively very similar distributions of the local values between MRI and CFD. Finally, a direct comparison between in vivo 4D-flow MRI and CFD with the RSM turbulence model is performed in the CoA. MRI can properly identify regions with locally elevated or suppressed WSS. If the exact values of the WSS are necessary, CFD is the preferred method. For future applications, we recommend the use of the combined MRI/CFD method for analysis and evaluation of the local flow patterns and WSS in the aorta.Cardiovascular Aspects of Radiolog

    Characterization of ascending aortic flow in patients with degenerative aneurysms a 4D flow magnetic resonance study

    Get PDF
    Objectives Degenerative thoracic aortic aneurysm (TAA) patients are known to be at risk of life-threatening acute aortic events. Guidelines recommend preemptive surgery at diameters of greater than 55 mm, although many patients with small aneurysms show only mild growth rates and more than half of complications occur in aneurysms below this threshold. Thus, assessment of hemodynamics using 4-dimensional flow magnetic resonance has been of interest to obtain more insights in aneurysm development. Nonetheless, the role of aberrant flow patterns in TAA patients is not yet fully understood. Materials and Methods A total of 25 TAA patients and 22 controls underwent time-resolved 3-dimensional phase contrast magnetic resonance imaging with 3-directional velocity encoding (ie, 4-dimensional flow magnetic resonance imaging). Hemodynamic parameters such as vorticity, helicity, and wall shear stress (WSS) were calculated from velocity data in 3 anatomical segments of the ascending aorta (root, proximal, and distal). Regional WSS distribution was assessed for the full cardiac cycle. Results Flow vorticity and helicity were significantly lower for TAA patients in all segments. The proximal ascending aorta showed a significant increase in peak WSS in the outer curvature in TAA patients, whereas WSS values at the inner curvature were significantly lower as compared with controls. Furthermore, positive WSS gradients from sinotubular junction to midascending aorta were most prominent in the outer curvature, whereas from midascending aorta to brachiocephalic trunk, the outer curvature showed negative WSS gradients in the TAA group. Controls solely showed a positive gradient at the inner curvature for both segments. Conclusions Degenerative TAA patients show a decrease in flow vorticity and helicity, which is likely to cause perturbations in physiological flow patterns. The subsequent differing distribution of WSS might be a contributor to vessel wall remodeling and aneurysm formation.Cardiolog

    Echo planar imaging–induced errors in intracardiac 4D flow MRI quantification

    Get PDF
    Purpose To assess errors associated with EPI-accelerated intracardiac 4D flow MRI (4DEPI) with EPI factor 5, compared with non-EPI gradient echo (4DGRE). Methods Three 3T MRI experiments were performed comparing 4DEPI to 4DGRE: steady flow through straight tubes, pulsatile flow in a left-ventricle phantom, and intracardiac flow in 10 healthy volunteers. For each experiment, 4DEPI was repeated with readout and blip phase-encoding gradient in different orientations, parallel or perpendicular to the flow direction. In vitro flow rates were compared with timed volumetric collection. In the left-ventricle phantom and in vivo, voxel-based speed and spatio-temporal median speed were compared between sequences, as well as mitral and aortic transvalvular net forward volume. Results In steady-flow phantoms, the flow rate error was largest (12%) for high velocity (>2 m/s) with 4DEPI readout gradient parallel to the flow. Voxel-based speed and median speed in the left-ventricle phantom were ≤5.5% different between sequences. In vivo, mean net forward volume inconsistency was largest (6.4 ± 8.5%) for 4DEPI with nonblip phase-encoding gradient parallel to the main flow. The difference in median speed for 4DEPI versus 4DGRE was largest (9%) when the 4DEPI readout gradient was parallel to the flow. Conclusions Velocity and flow rate are inaccurate for 4DEPI with EPI factor 5 when flow is parallel to the readout or blip phase-encoding gradient. However, mean differences in flow rate, voxel-based speed, and spatio-temporal median speed were acceptable (≤10%) when comparing 4DEPI to 4DGRE for intracardiac flow in healthy volunteers

    High Frame Rate Ultrasound Particle Image Velocimetry for Estimating High Velocity Flow Patterns in the Left Ventricle

    Get PDF
    Echocardiographic determination of multi-component blood flow dynamics in the left ventricle remains a challenge. In this study we compare contrast enhanced, high frame rate (1000 fps) echo particle image velocimetry (ePIV) against optical particle image velocimetry (oPIV, gold standard), in a realistic left ventricular phantom. We find that ePIV compares well to oPIV, even for the high velocity inflow jet (normalized RMSE = 9 ±1%). Additionally, we perform the method of Proper Orthogonal Decomposition, to better qualify and quantify the differences between the two modalities. We show that ePIV and oPIV resolve very similar flow structures, especially for the lowest order mode with a cosine similarity index of 86%. The co

    Numerical analysis of blood flow in realistic arteries subjected to strong non-uniform magnetic fields

    No full text
    The paper reports on a comprehensive mathematical model for simulations of blood flow under the presence of strong non-uniform magnetic fields. The model consists of a set of Navier–Stokes equations accounting for the Lorentz and magnetisation forces, and a simplified set of Maxwell’s equations (Biot–Savart/Ampere’s law) for treating the imposed magnetic fields. The relevant hydrodynamic and electromagnetic properties of human blood were taken from the literature. The model is then validated for different test cases ranging from a simple cylindrical geometry to real-life right-coronary arteries in humans. The time-dependency of the wall-shear-stress for different stenosis growth rates and the effects of the imposed strong non-uniform magnetic fields on the blood flow pattern are presented and analysed. It is concluded that an imposed non-uniform magnetic field can create significant changes in the secondary flow patterns, thus making it possible to use this technique for optimisations of targeted drug delivery.MSP/Multi-Scale PhysicsApplied Science
    • …
    corecore