92 research outputs found

    Cooperation between passive and active silicon transporters clarifies the ecophysiology and evolution of biosilicification in sponges

    Get PDF
    Este artículo contiene 14 páginas, 6 figuras.The biological utilization of dissolved silicon (DSi) influences ocean ecology and biogeochemistry. In the deep sea, hexactinellid sponges are major DSi consumers that remain poorly understood. Their DSi consumption departs from the Michaelis-Menten kinetics of shallow-water demosponges and appears particularly maladapted to incorporating DSi from the modest concentrations typical of the modern ocean. Why did sponges not adapt to the shrinking DSi availability that followed diatom expansion some 100 to 65 million years ago? We propose that sponges incorporate DSi combining passive (aquaglyceroporins) and active (ArsB) transporters, while only active transporters (SITs) operate in diatoms and choanoflagellates. Evolution of greater silicon transport efficiency appears constrained by the additional role of aquaglyceroporins in transporting essential metalloids other than silicon. We discuss the possibility that lower energy costs may have driven replacement of ancestral SITs by less efficient aquaglyceroporins, and discuss the functional implications of conservation of aquaglyceroporin-mediated DSi utilization in vertebrates.This research was completed mostly by funds from the SponGES H2020 grant (BG-01-2015.2, agreement number 679849-2) to M.M. and A.R. and from Fisheries and Oceans Canada Strategic Program for Ecosystem-Based Research and Advice (SPERA) and International Governance Strategy (IGS) projects awarded to L.B. and E.K. This study also benefitted from funding by a PBS grant (MINECO CTM2015-67221-R) to M.M. This study is in memory of Hans Tore Rapp, who passed away on 7 March 2020, and who was the main coordinator of the H2020 SponGES project that has made this research possible.Peer reviewe

    Kernel Density Surface Modelling as a Means to Identify Significant Concentrations of Vulnerable Marine Ecosystem Indicators

    Get PDF
    The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME) from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO) produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE) to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO) Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify ‘‘significant concentrations’’ of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores), and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here and elsewhere.Versión del editor4,411

    Paternal mtDNA and Maleness Are Co-Inherited but Not Causally Linked in Mytilid Mussels

    Get PDF
    BACKGROUND: In marine mussels of the genus Mytilus there are two mitochondrial genomes. One is transmitted through the female parent, which is the normal transmission route in animals, and the other is transmitted through the male parent which is an unusual phenomenon. In males the germ cell line is dominated by the paternal mitochondrial genome and the somatic cell line by the maternal. Research to date has not allowed a clear answer to the question of whether inheritance of the paternal genome is causally related to maleness. METHODOLOGY/PRINCIPAL FINDINGS: Here we present results from hybrid crosses, from triploid mussels and from observations of sperm mitochondria in fertilized eggs which clearly show that maleness and presence of the paternal mitochondrial genome can be decoupled. These same results show that the female mussel has exclusive control of whether her progeny will inherit the mitochondrial genome of the male parent. CONCLUSIONS/SIGNIFICANCE: These findings are important in our efforts to understand the mechanistic basis of this unusual mode of mitochondrial DNA inheritance that is common among bivalves

    Scientific Council June Meeting 2014

    Get PDF

    From Sea to Sea: Canada's Three Oceans of Biodiversity

    Get PDF
    Evaluating and understanding biodiversity in marine ecosystems are both necessary and challenging for conservation. This paper compiles and summarizes current knowledge of the diversity of marine taxa in Canada's three oceans while recognizing that this compilation is incomplete and will change in the future. That Canada has the longest coastline in the world and incorporates distinctly different biogeographic provinces and ecoregions (e.g., temperate through ice-covered areas) constrains this analysis. The taxonomic groups presented here include microbes, phytoplankton, macroalgae, zooplankton, benthic infauna, fishes, and marine mammals. The minimum number of species or taxa compiled here is 15,988 for the three Canadian oceans. However, this number clearly underestimates in several ways the total number of taxa present. First, there are significant gaps in the published literature. Second, the diversity of many habitats has not been compiled for all taxonomic groups (e.g., intertidal rocky shores, deep sea), and data compilations are based on short-term, directed research programs or longer-term monitoring activities with limited spatial resolution. Third, the biodiversity of large organisms is well known, but this is not true of smaller organisms. Finally, the greatest constraint on this summary is the willingness and capacity of those who collected the data to make it available to those interested in biodiversity meta-analyses. Confirmation of identities and intercomparison of studies are also constrained by the disturbing rate of decline in the number of taxonomists and systematists specializing on marine taxa in Canada. This decline is mostly the result of retirements of current specialists and to a lack of training and employment opportunities for new ones. Considering the difficulties encountered in compiling an overview of biogeographic data and the diversity of species or taxa in Canada's three oceans, this synthesis is intended to serve as a biodiversity baseline for a new program on marine biodiversity, the Canadian Healthy Ocean Network. A major effort needs to be undertaken to establish a complete baseline of Canadian marine biodiversity of all taxonomic groups, especially if we are to understand and conserve this part of Canada's natural heritage

    Influence of Benthic Macrofauna as a Spatial Structuring Agent for Juvenile Haddock (Melanogrammus aeglefinus) on the Eastern Scotian Shelf, Atlantic Canada.

    No full text
    We examined the habitat of juvenile haddock on the eastern Scotian Shelf (off Nova Scotia, Canada) in relation to grab-sampled benthic macrofaunal invertebrate species assemblages in order to determine whether there were significant differences in benthic macrofauna between areas of historically persistent high and low juvenile haddock abundance. Our analyses were conducted over two spatial scales in each of two years: among banks (Emerald, Western and Sable Island), approximately 60 km distant from each other, and between areas of high and low juvenile haddock abundance at distances of 10 to 30 km-all in an area that had not experienced groundfishing in the decade prior to sampling. We also examined fine-scale (10s of metres) within-site variability in the macrofauna and used surficial sediment characteristics, along with hydrographic variables, to identify environmental correlates. PERMANOVA identified statistically significant differences in biomass, density and composition of the benthos associated with juvenile haddock abundance; however it was difficult to determine whether the results had biological relevance. Post hoc tests showed that these differences occurred only on Sable Island Bank where both fish and benthos may have been independently responding to sediment type which was most different there (100% sand in the area of low haddock abundance vs. 22% gravel in the area of high haddock abundance). In total, 383 benthic taxa representing 13 phyla were identified. Annelida was the most specious phylum (36.29% of taxa, representing 33 families), followed by Arthropoda (with Crustaceans, mostly Amphipoda, accounting for 25.07% of the total number of taxa). The strongest pattern in the macrofauna was expressed at the largest scale, between banks, accounting for approximately 25% of the variation in the data. Emerald Bank, deeper, warmer and saltier than the Western and Sable Island Banks, had a distinctive fauna
    • …
    corecore