312 research outputs found

    Note on Almost Krull Semigroup Rings

    Get PDF

    Similarities and uniqueness of Lyα\alpha emitters among star-forming galaxies at z=2.5

    Full text link
    We conducted a deep narrow-band imaging survey with the Subaru Prime Focus Camera on the Subaru Telescope and constructed a sample of Lyα\alpha emitters (LAEs) at z=2.53 in the UDS-CANDELS field where a sample of Hα\alpha emitters (HAEs) at the same redshift is already obtained from our previous narrow-band observation at NIR. The deep narrow-band and multi broadband data allow us to find LAEs of stellar masses and star-formation rates (SFRs) down to \gtrsim10810^8 M_\odot and \gtrsim0.2 M_\odot/yr, respectively. We show that the LAEs are located along the same mass-SFR sequence traced by normal star-forming galaxies such as HAEs, but towards a significantly lower mass regime. Likewise, LAEs seem to share the same mass--size relation with typical star-forming galaxies, except for the massive LAEs, which tend to show significantly compact sizes. We identify a vigorous mass growth in the central part of LAEs: the stellar mass density in the central region of LAEs increases as their total galaxy mass grows. On the other hand, we see no Lyα\alpha line in emission for most of the HAEs. Rather, we find that the Lyα\alpha feature is either absent or in absorption (Lyα\alpha absorbers; LAAs), and its absorption strength may increase with reddening of the UV continuum slope. We demonstrate that a deep Lyα\alpha narrow-band imaging like this study is able to search for not only LAEs but also LAAs in a certain redshift slice. This work suggests that LAEs trace normal star-forming galaxies in the low-mass regime, while they remain as a unique population because the majority of HAEs are not LAEs.Comment: 20 pages, 18 figures, 3 tables, accepted for publication in MNRA

    Path factors in claw-free graphs

    Get PDF
    AbstractA graph G is called claw-free if G has no induced subgraph isomorphic to K1,3. We prove that if G is a claw-free graph with minimum degree at least d, then G has a path factor such that the order of each path is at least d+1

    Elevated expression of interleukin-6 (IL-6) and serum amyloid A (SAA) in the skin and the serum of recessive dystrophic epidermolysis bullosa: Skin as a possible source of IL-6 through Toll-like receptor ligands and SAA

    Get PDF
    The effect of persistent skin inflammation on extracutaneous organs and blood is not well studied. Patients with recessive dystrophic epidermolysis bullosa (RDEB), a severe form of the inherited blistering skin disorder, have widespread and persistent skin ulcers, and they develop various complications including anaemia, hyperglobulinaemia, hypoalbuminaemia and secondary amyloidosis. These complications are associated with the bioactivities of IL-6, and the development of secondary amyloidosis requires the persistent elevation of serum amyloid A (SAA) level. We found that patients with RDEB had significantly higher serum levels of IL-6 and SAA compared to healthy volunteers and patients with psoriasis or atopic dermatitis. Both IL-6 and SAA were highly expressed in epidermal keratinocytes and dermal fibroblasts of the skin ulcer lesions. Keratinocytes and fibroblasts surrounding the ulcer lesions are continuously exposed to Toll-like receptor (TLR) ligands, pathogen-associated and damage-associated molecular pattern molecules. In vitro, TLR ligands induced IL-6 expression via NF-κB in normal human epidermal keratinocytes (NHEKs) and dermal fibroblasts (NHDFs). SAA further induced the expression of IL-6 via TLR1/2 and NF-κB in NHEKs and NHDFs. The limitation of this study is that NHEKs and NHDFs were not derived from RDEB patients. These observations suggest that TLR-mediated persistent skin inflammation might increase the risk of IL-6-related systemic complications, including RDEB

    MPP6 stimulates both RRP6 and DIS3 to degrade a specified subset of MTR4-sensitive substrates in the human nucleus

    Get PDF
    ヒト細胞内でRNA分解時に働く因子の役割を解明 --細胞内におけるRNA分解機構の全容解明に期待--. 京都大学プレスリリース. 2022-08-05.Recent in vitro reconstitution analyses have proven that the physical interaction between the exosome core and MTR4 helicase, which promotes the exosome activity, is maintained by either MPP6 or RRP6. However, knowledge regarding the function of MPP6 with respect to in vivo exosome activity remains scarce. Here, we demonstrate a facilitative function of MPP6 that composes a specific part of MTR4-dependent substrate decay by the human exosome. Using RNA polymerase II-transcribed poly(A)⁺ substrate accumulation as an indicator of a perturbed exosome, we found functional redundancy between RRP6 and MPP6 in the decay of these poly(A)⁺ transcripts. MTR4 binding to the exosome core via MPP6 was essential for MPP6 to exert its redundancy with RRP6. However, at least for the decay of our identified exosome substrates, MTR4 recruitment by MPP6 was not functionally equivalent to recruitment by RRP6. Genome-wide classification of substrates based on their sensitivity to each exosome component revealed that MPP6 deals with a specific range of substrates and highlights the importance of MTR4 for their decay. Considering recent findings of competitive binding to the exosome between auxiliary complexes, our results suggest that the MPP6-incorporated MTR4-exosome complex is one of the multiple alternative complexes rather than the prevailing one

    A novel interplay between the Fanconi anemia core complex and ATR-ATRIP kinase during DNA cross-link repair.

    Get PDF
    When DNA replication is stalled at sites of DNA damage, a cascade of responses is activated in the cell to halt cell cycle progression and promote DNA repair. A pathway initiated by the kinase Ataxia teleangiectasia and Rad3 related (ATR) and its partner ATR interacting protein (ATRIP) plays an important role in this response. The Fanconi anemia (FA) pathway is also activated following genomic stress, and defects in this pathway cause a cancer-prone hematologic disorder in humans. Little is known about how these two pathways are coordinated. We report here that following cellular exposure to DNA cross-linking damage, the FA core complex enhances binding and localization of ATRIP within damaged chromatin. In cells lacking the core complex, ATR-mediated phosphorylation of two functional response targets, ATRIP and FANCI, is defective. We also provide evidence that the canonical ATR activation pathway involving RAD17 and TOPBP1 is largely dispensable for the FA pathway activation. Indeed DT40 mutant cells lacking both RAD17 and FANCD2 were synergistically more sensitive to cisplatin compared with either single mutant. Collectively, these data reveal new aspects of the interplay between regulation of ATR-ATRIP kinase and activation of the FA pathway

    Large Population of ALMA Galaxies at z>6 with Very High [OIII]88um to [CII]158um Flux Ratios: Evidence of Extremely High Ionization Parameter or PDR Deficit?

    Full text link
    We present our new ALMA observations targeting [OIII]88um, [CII]158um, [NII]122um, and dust continuum emission for three Lyman break galaxies at z=6.0293-6.2037 identified in the Subaru/Hyper Suprime-Cam survey. We clearly detect [OIII] and [CII] lines from all of the galaxies at 4.3-11.8sigma levels, and identify multi-band dust continuum emission in two of the three galaxies, allowing us to estimate infrared luminosities and dust temperatures simultaneously. In conjunction with previous ALMA observations for six galaxies at z>6, we confirm that all the nine z=6-9 galaxies have high [OIII]/[CII] ratios of L[OIII]/L[CII]~3-20, ~10 times higher than z~0 galaxies. We also find a positive correlation between the [OIII]/[CII] ratio and the Lya equivalent width (EW) at the ~90% confidence level. We carefully investigate physical origins of the high [OIII]/[CII] ratios at z=6-9 using Cloudy, and find that high density of the interstellar medium, low C/O abundance ratio, and the cosmic microwave background attenuation are responsible to only a part of the z=6-9 galaxies. Instead, the observed high [OIII]/[CII] ratios are explained by 10-100 times higher ionization parameters or low photodissociation region (PDR) covering fractions of 0-10%, both of which are consistent with our [NII] observations. The latter scenario can be reproduced with a density bounded nebula with PDR deficit, which would enhance the Lya, Lyman continuum, and C+ ionizing photons escape from galaxies, consistent with the [OIII]/[CII]-Lya EW correlation we find.Comment: 20 pages, 18 figures, Accepted for publication in Ap
    corecore