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NOTE ON ALMOST KRULL SEMIGROUP RINGS

To the memory of Professor Hisao Tominaga
KEeN-1cHl YOSHIDA and Ryuki MATSUDA

Let S be a torsion-free cancellative commutative (additive) semigroup
2 {0}. Torsion-free commutative (additive) group 2 {0} is denoted by G
throughout the paper. Let D be an integral domain. The semigroup ring
of S over D is denoted by D[X;S]. If Dys is a Noetherian domain for each
maximal ideal M of D, then D is called a locally Noetherian domain. If
Dy is a Krull domain for each maximal ideal M of D, then D is called
an almost Krull domain. In this paper we get a necessary and sufficient
condition for D[X; S] to be an almost Krull domain for alocally Noetherian
domain D of characteristic p > 0.

Lemma 1 (A part of [1, Theorem) and [4, Proposition (2.2)]). Let
F be a free subgroup of G such that G/F is torsion. Then D[X;G] is
a locally Noetherian domain if and only if D is a locally Noetherian do-
main, torsion-free rank of G is finite and (G/F), is a finite group for each
nonunit (of D) prime number p; where (G/F'), denotes the p-primary com-
ponent of G/ F (that is (G/F), = {& € G/F|p*a = 0 for some n € N}).

Lemma 2. Let D be a Noetherian Krull domain of characteristic
p > 0. Let G be of the form G = Zpyey + --- + Z,)en, where the set
€1, ,en of elements is linearly independent over Z. Then D[X;G] is an
almost Krull domain.

Proof. We set F' = Zey + -+ + Ze,. Then (G/F), = 0. Lemma 1
implies that D[X;G] is a locally Noetherian domain. It follows that
D[X;G)am is a Noetherian integrally closed domain for each maximal
ideal M of D[X;G]. Hence D[X;G]is an almost Krull domain.

The quotient field of a domain D is denoted by q(D). Let {v;|i € I}
be a set of valuations on a field k. If the set {v;|vi(a) # 0} is finite for
each nonzero a € k, then {v;| i € I} is said to be of finite character.

Proposition 3. Let D be a Noetherian Krull domain of character-
istic p > 0. Let G = Y \ca Zp)er, where the subset {ex|\ € A} of G is
linearly independent over Z. Then D[X;G] is an almost Krull domain.
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Proof. The proof is similar to that of {3, Lemma 26]. We may assume
that A is an infinite set by Lemma 2. Let {A(0)| ¢ € X} be the set of non-
empty finite subsets of A, and set G, = Z,\eA(a) Z ey for each o € L.
Let {P?|7 € T,} be the set of prime ideals of D[X;G,] of height one, and
let v2 be the valuation on q(D[X;G,]) which has center P7 on D[X;G,].
Let w? be the canonical extension of v? to q( D[X;G]), and let P? be the
center of w? on D[X;G]. Then w? is essential for D[X; G]. It follows that
{P?|c € ,7 € T,} is the set of prime ideals of D[X; G] of height one.

Let M be a nonzero prime ideal of D[X;G], and let {P;|i € I} be the
set of height one prime ideals of D[X;G] contained in M. Let W; be the
valuation ring D[X;G]z. and let w; be the valuation of W;. If p € (; Wi,
there exists ¢ € T such that ¢ € q(D[X;G,]) and the restriction N of M to
D[X;G,] is nonzero. Let {P;|j € J} be the set of height one prime ideals
of D[X;G,] contained in N, and let v; be the valuation on q{D[X;G,])
which has center P; on D[X;G,]| for each j € J. Since v;(¢) > 0 for
each j, we have ¢ € D[X;G,|n. It follows that D[X; Gy = N; Wi.

Next let 0 # f € M. We have f € D[X;G,] for some 0. We set
L=1{iellPBND[X:Gs] # (0)}. fieI—L,then wi(f) =0. Let
Py = PN D[X;G,], and let v; be the valuation on q(D[X;G,]) which has
center P, on D[X;G,] for I € L. We have P # Py if P, # Pu. Since
D[X;G,]~ is a Krull domain, {v|! € L} has finite character.

It follows that {w;|i € I} has finite character and that D[X; G| is a
Krull domain.

Lemma 4 ([3, Lemma 27,(2)]). Let k be a field of characteristic
p > 0. Let F be a free subgroup of G such that G/ F is torsion, and let H
be a subgroup of G such that (G/F), = H/F. Then k[X;G] is an almost
Krull domain if and only if H satisfies the ascending chain condition on
cyclic subgroups.

Lemma 5 ([3, Lemma 17,(2)]). Let H be a subgroup of G. If D[ X:G]

is an almost Krull domain, then D[X; H] is also an almost Krull domain.

Lemma 6 ([5, Theorem 2.13]). Let D be an almost Krull domain
with quotient fleld K, and let L be a finite algebraic extension field of K.
Then the integral closure of D in L is an almost Krull domain.

Let H be a subgroup of G. Assume that for each o € G there ezists
n € N such that na € H. Then G is said to be integral over H.
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Lemma 7. Let D be an integrally closed domain. Let H be a sub-
group of G such that G is integral over H. Then the properties (LO),
(GU) and (GD) hold for the pair of rings D[X;G] and D[X; H].

Proof. Because D[X;G] is an integral extension of D[X;H], and
D[X; H] is an integrally closed domain.

Proposition 8. Let D be a Noetherian Krull domain of characteris-
ticp> 0. Let F' be a free subgroup of G such that G/ F is torsion, and let
H be a subgroup of G such that (G/F), = H/F. Then D[X;G] is an al-
most Krull domain if and only if H satisfies the ascending chain condition
on cyclic subgroups.

Proof. We set k = q(D).

The necessity.

k[X;G] is an almost Krull domain. Lemma 4 implies that H satisfies
the ascending chain condition on cyclic subgroups.

The sufficiency.

We set K = {« € G|la € F for some | € N with (I,p) = 1}. Then
K is a subgroup of a group of the form K = 2-aea Zpyer. where the
subset {ex| A € A} is linearly independent over Z. Proposition 3 shows
that D[X; K] is an almost Krull domain. Then D[X; K] is an almost
Krull domain by Lemma 5. Also k[X;G] is an almost Krull domain by
Lemma 4. It follows that D[X;G]p is a discrete valuation ring for each
height one prime ideal P of D[X;G].

Let M be a nonzero prime ideal of D[X;G), and let {P;|i € I}
be the set of height one prime ideal of D[X;G] contained in M. Let
0 # ¢ € N; D[X;Glg. We have ¢ = f/g for f,g € D[X;G]. There exist
ai,-++,a; € G such that f,g € D[X:>;Za;). Set F + 5 ;Za; = Go.
Lemma 6 implies that D[X;Go] is an almost Krull domain. We set
M N D[X;Gy) = N, and set P, N D[X;Gy] = P; for each i. The proper-
ties (LO), (GU) and (GD) hold for the pair of rings D[X; G] and D[X; Gy)
(Lemma 7). We see that {P;|i € I} is the set of height one prime ideals
of D[X;Go| contained in N. Let w; be the valuation of D[X;G]p, and
let v; be the valuation of D[X;Gp]p, for each i. Then the restriction of
w; to q(D[X;Go)) is (equivalent to) v; for each i. Since w;(p) > 0, we
have v;(¢) > 0. It follows that ¢ € D[X;Go]n, and hence ¢ € D[X;G|p.
Therefore D[X;Ga = ; D[X;G]5.
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Next let 0 # f € M. We have f?" € D[X; K] for some n € N. We
set M N D[X;K] = N. Height one prime ideals of D[X; K| containing
fP" and contained in N are of finite number. Let Py,---, P, be the set
of such prime ideals. We note that the properties (LO),(GU) and (GD)
hold for the pair D[X;G] and D[X:K]. Let P, P’ be distinct height
one prime ideals of D[X; G| which contain f and is contained in M. Set
PN D[X;K] = P, and P'n D[X; K] = P'. Then we see that P, P’ are
distinct height one prime ideals of D[X; K.

It follows that height one prime ideals of D[X; G] which contain f and
is contained in M are only of finite number. Now the proof of Proposition 8
is complete.

Lemma 9 ([2, Proposition 14]). D[X; 5] is an almost Krull domain
if and only if § is a Krull semigroup, and D and D[X;Gy| are almost
Krull domains, where Gy is the mazimal subgroup of S.

Theorem 10. Let D be a locally Noetherian domain of characteristic
p > 0. Let Gy, £y and Hp be subgroups of S such that Gy is the mazimal
subgroup of S, Fy is a free subgroup of Go such that Go/Fy is torsion and
(Go/ Fo)p = Ho/Fy. Then D[X;S] is an almost Krull domain if and only
if D is an almost Krull domain, S is a Krull semigroup and Hy satisfies
the ascending chain condition on cyclic subgroups.

Proof. This follows from Proposition 8 and Lemma 9.
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