

Discrete Mathematics 243 (2002) 195-200

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note Path factors in claw-free graphs

Kiyoshi Ando^a, Yoshimi Egawa^b, Atsushi Kaneko^c, Ken-ichi Kawarabayashi^{d,*}, Haruhide Matsuda^e

^aDepartment of Information and Communication Engineering, University of Electro-Communications, 1-5-1 Chofu, Tokyo 182-8585, Japan

^bDepartment of Applied Mathematics, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

^cDepartment of Computer Science and Communication Engineering, Kogakuin University, 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677, Japan

^d Department of Mathematics, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan ^eDepartment of Business, Marketing & Distribution, Nakamura Gakuen University, 5-7-1 Befu, Jyonan-ku, Fukuoka 814-0198, Japan

Received 14 June 2000; revised 21 February 2001; accepted 5 March 2001

Abstract

A graph G is called claw-free if G has no induced subgraph isomorphic to $K_{1,3}$. We prove that if G is a claw-free graph with minimum degree at least d, then G has a path factor such that the order of each path is at least d + 1. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Path factor; Claw-free

1. Introduction

In this paper, we consider finite undirected graphs G without loops or multiple edges. The complete bipartite graph $K_{1,3}$ is called a *claw*, and G is said to be *claw-free* if G has no induced subgraph isomorphic to $K_{1,3}$. A *path factor* is a spanning subgraph whose components are paths. For a positive integer k, $P_{\geq k}$ -factor means a path factor such that each component has at least k vertices.

Our main result is the following theorem.

Theorem 1. Let G be a claw-free graph with $\delta(G) \ge d$. Then G has a $P_{\ge d+1}$ -factor.

0012-365X/02/\$ - see front matter \odot 2002 Elsevier Science B.V. All rights reserved. PII: S0012-365X(01)00214-X

^{*} Corresponding author. Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nahsville, TN 37240-0001, USA.

E-mail address: k_keniti@comb.math.keio.ac.jp (K. Kawarabayashi).

We now list some of the known results concerning a $P_{\ge k}$ -factor. Let i(G) denote the number of isolated vertices in a graph G. Let w(G) denote the number of components of a graph G.

The following is a classical result proved by Akiyama et al. [1].

Theorem 2. A graph G has a $P_{\geq 2}$ -factor if and only if i(G - S) is at most 2|S| for every subset S of V(G).

Recently, Kaneko [5] proved the following theorem.

Theorem 3. A graph G has a $P_{\geq 3}$ -factor if and only if $C_S(G-T)$ is at most 2|T| for every subset T of V(G), where $C_S(G)$ denotes the number of so-called sun components of a graph G (see in [5]).

Very recently, Hanazawa et al. [4] proved the following theorem.

Theorem 4. Let G be a connected bipartite graph of order at least 4. If $w(G - S) < \frac{4}{3}|S|$ for every subset S of V(G) with $|S| \ge 2$, then G has a $P_{\ge 4}$ -factor.

The bound "d + 1" in Theorem 1 is sharp in the sense that we cannot replace d + 1 by d + 2. If we allow G to be disconnected, this can be seen by $K_{d+1} \cup K_{d+1} \cup \cdots$. Even if we require G to be connected, the following examples show the sharpness of the bound d + 1.

It is easy to see that the graphs above are claw-free graphs with minimum degree at least d - 1, but have no path-factor not containing a path of order less than or equal to d + 1.

If we add the assumption "2-connected", the bound "d+1" may not be best possible. We conjecture the following.

Conjecture 1. Let G be a 2-connected claw-free graph with $\delta(G) \ge d$. Then G has a $P_{\ge 3d+3}$ -factor.

If Conjecture 1 is true, the assumption that the bound "3d + 3" is best possible, is shown by the following example:

It is easy to see that the graph above is a claw-free graph with minimum degree at least d and there is no path factor not containing a path of order less than or equal to 3d + 3.

For graph theoretic notation not defined in this paper, we refer the reader to [2]. We denote by $\delta(G)$ the minimum degree of a graph G. Let $N_G(x)$ denote the set of vertices adjacent to x in G. With a slight abuse of notation, for a subgraph H of G and a vertex $x \in V(G) - V(H)$, $N_H(x) = N_G(x) \cap V(H)$.

Given a subset $S \subseteq V(G)$, the subgraph of G induced by S is denoted by G[S]. For two disjoint subsets A and B of V(G), we denote by $E_G(A,B)$ the set of edges of G joining A to B. The number of vertices in a maximum independent set of vertices in G is denoted by $\alpha(G)$.

2. Proof of Theorem 1

In order to prove Theorem 1, we need the following.

Theorem A (Chvátal and Erdős [3]). Let $k \ge 1$ be an integer and G a k-connected graph. If $\alpha(G) \le k + 1$, then G has a hamiltonian path.

We now prove Theorem 1. Let G be as in Theorem 1. Let P_1 be a longest path in G and let P_2 be a longest path in $G - V(P_1)$. By repeating this procedure, we obtain paths P_1, \ldots, P_r such that $V(P_1 \cup \cdots \cup P_r) = V(G)$ and $P_1 \cap \cdots \cap P_r = \emptyset$. Possibly, for some q, $|V(P_i)| = 1$ for $q \leq i \leq r$. Note that $|V(P_1)| \geq \cdots \geq |V(P_r)|$. If $|V(P_r)| \geq d + 1$, then the proof is complete. Thus we may assume that $|V(P_r)| \leq d$.

Fig. 1. Proof of Claim 2.

Let u_i be an endvertex of P_i for $1 \le i \le r - 1$. The following claim immediately follows from the maximality of $|V(P_i)|$.

Claim 1. If $\{w\} \in N_G(u_k) \cap V(P_i)$ for $1 \le i < k \le r$, then w is not an endvertex of P_i , and $w'u_k, w''u_k \notin E(G)$ and $w'w'' \in E(G)$, where w' and w'' are the neighbors of w in P_i .

Proof. By the maximality of $|V(P_i)|$, w is not an endvertex of P_i and $w', w'' \notin N_G(u_k)$. Since $G[\{w, u_k, w', w''\}]$ does not induce a claw, this implies $w'w'' \in E(G)$. \Box

Next, we prove the following claims.

Claim 2. $N_G(u_k) \cap N_G(u_{k'}) = \emptyset$ for any two endvertices $u_k \in P_k$ and $u_{k'} \in P_{k'}$, $1 \leq k < k' \leq r$.

Proof. By way of contradiction, suppose that for some k and k' with $1 \le k < k' \le r$, $N_G(u_k) \cap N_G(u_{k'}) \ne \emptyset$. By the maximality of $|V(P_j)|$, $N_G(u_k) \cap V(P_j) = \emptyset$ for any j with j > k. Let $w \in N_G(u_k) \cap N_G(u_{k'})$. Then $w \in V(P_l)$ for some l with $1 \le l \le k$. Assume l < k. By Claim 1, w is not an endvertex of P_l . Let w' be a neighbor of w in P_l . Again, by Claim 1, $u_k w', u_{k'} w' \notin E(G)$. But $G[\{u_k, u_{k'}, w, w'\}]$ induces a claw, which contradicts the fact that G is claw-free.

Assume now that l = k. By Claim 1, w is not an endvertex of P_k . Let w' and w'' be the neighbors of w in P_l . By Claim 1, $w'w'' \in E(G)$. But we can find a longer path containing $V(P_k) \cup \{u_{k'}\} \cup V(P_{k'})$. See Fig. 1. This completes the proof. \Box

Claim 3. Let *i* be an integer with $1 \le i < j \le r$, and write $V(P_i) - (\bigcup_{j \le k \le r} N_G(u_k)) = \{z_1, \ldots, z_m\}$ so that z_1, \ldots, z_m occur on P_i in this order. Then, for each *t* with $1 \le t \le m - 1$, $z_t z_{t+1} \in E(G)$.

Proof. We proceed by backward induction on *j*. If j = r, then the result immediately follows from Claim 1. Assume j < r. Write $V(P_i) - (\bigcup_{j+1 \le k \le r} N_G(u_k)) = \{y_1, \ldots, y_l\}$ so that y_1, \ldots, y_l occur on P_i in this order. By the induction hypothesis, we know that, for each t' with $1 \le t' \le l-1$, $y_{t'}y_{t'+1} \in E(G)$. Take a vertex $y_s \in N_G(u_j)$. By Claim 1, we know that y_1 and y_l are ends of P_i . Hence $s \ne 1, l$. It suffices to prove that

198

Fig. 2. Proof of Claim 3; the case where n is odd.

Fig. 3. Proof of Claim 3; the case where n is even.

 $y_{s-1}, y_{s+1} \notin N_G(u_j)$ because if $y_{s-1}, y_{s+1} \notin N_G(u_j)$, then, since $G[\{y_{s-1}, y_s, y_{s+1}, u_j\}]$ does not induce a claw, we have $y_{s-1}y_{s+1} \in E(G)$, which implies the conclusion of the claim. Assume $y_{s-1} \in N_G(u_j)$ or $y_{s+1} \in N_G(u_j)$. Without loss of generality, we may assume $y_{s-1}u_j \in E(G)$. Let (p_2, \ldots, p_n) be the segment of P_i between y_{s-1} and y_s with $p_2 = y_{s-1}$ and $p_n = y_s$ and let p_1 be the predecessor of p_2 on P_i . Since $\{p_2, \ldots, p_{n-1}\} \in \bigcup_{j \leq k \leq r} N_G(u_k)$, it follows from Claim 2 that, for any q with $1 \leq q \leq n-2, p_q p_{q+2} \in E(G)$. But, then we can find a longer path P'_i such that $V(P'_i) = V(P_i) \cup \{u_i\}$, which contradicts the choice of P_i , see Figs. 2 and 3. \Box

Claim 4. Let *i* be an integer with $1 \le i \le r$. Then there exists a path P'_i such that $V(P'_i) = (V(P_i) - \bigcup_{i+1 \le k \le r} N_G(u_k)) \cup N_G(u_i)$.

Proof. Write $V(P_i) - (\bigcup_{i+1 \le k \le r} N_G(u_k)) = \{z_1, \dots, z_m\}$ so that z_1, \dots, z_m occur on P_i in this order. Then, by Claim 3, for each t with $1 \le t \le m-1$, $z_t z_{t+1} \in E(G)$. Define a path P' by $P' = (z_1, \dots, z_m)$. By Claim 1, we may assume $u_i = z_1$. Since G is claw-free, $\alpha(G[N_{G-P'}(u_i)]) \le 2$ holds. If $N_{G-P'}(u_i) = \emptyset$, then we are done. Thus, we may assume $N_{G-P'}(u_i) \ne \emptyset$. If $N_{G-P'}(u_i)$ is connected, then $N_{G-P'}(u_i)$ has a hamiltonian path Q by Theorem A, and hence we obtain a desired path P'_i by adding Q to P' at u_i . Thus, we may assume that $N_{G-P'}(u_i)$ is not connected. Since $\alpha(N_{G-P'}(u_i)) \le 2$, $N_{G-P'}(u_i)$ consists of two components A and B, where A and B are complete. Let $V(A) = \{a_1, \dots, a_s\}$ and $V(B) = \{b_1, \dots, b_t\}$. If $P' = \{u_i\}$, then we can simply let $P'_i = a_1, \dots, a_s, u_i, b_1, \dots, b_t$. Thus we may assume $|P_i| \ge 2$. Since G is claw-free and $E_G(A, B) = \emptyset$, we obtain either $A \subseteq N_G(z_2)$ or $B \subseteq N_G(z_2)$. Without loss of generality, we may assume $B \subseteq N_G(z_2)$. We now obtain a desired path P'_i by letting $P'_i = a_1, \ldots, a_t, u_i, b_1, \ldots, b_s, z_2, z_3, \ldots, z_m$.

Note that $|P'_i| \ge d + 1$ for any *i* with $1 \le i \le r$ since $N_G(u_i) \subseteq V(P'_i)$ by Claim 4 and since $u_i \in V(P'_i)$ by Claim 1. Further by Claim 2, $V(P'_i) \cap V(P'_j) = \emptyset$ for any *i*, *j* with $1 \le i < j \le k$. Since it immediately follows from Claim 4 that $V(G) = V(P'_1 \cup P'_2 \cup \cdots \cup P'_r)$, this means that $P'_1 \cup P'_2 \cup \cdots \cup P'_r$ form a $P_{\ge d+1}$ -factor. This completes the proof. \Box

References

- [1] J. Akiyama, D. Avis, H. Era, On a {1,2}-factor of a graph, TRU Math. 16 (1980) 97-102.
- [2] G. Chartrand, L. Lesniak, Graphs & Digraphs, 3rd edition, Wadsworth & Brooks/Cole, Monterey, CA, 1996.
- [3] V. Chvátal, P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111-113.
- [4] A. Hanazawa, K. Kawarabayashi, K. Ota, in preparation.
- [5] A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two, preprint.