Note Path factors in claw-free graphs

Kiyoshi Ando ${ }^{\text {a }}$, Yoshimi Egawa ${ }^{\text {b }}$, Atsushi Kaneko ${ }^{\text {c }}$, Ken-ichi Kawarabayashid ${ }^{\text {, },}$, Haruhide Matsuda ${ }^{\mathrm{e}}$
${ }^{\text {a }}$ Department of Information and Communication Engineering, University of Electro-Communications, 1-5-1 Chofu, Tokyo 182-8585, Japan
${ }^{\mathrm{b}}$ Department of Applied Mathematics, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
${ }^{\mathrm{c}}$ Department of Computer Science and Communication Engineering, Kogakuin University, 1-24-2
Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677, Japan
${ }^{\mathrm{d}}$ Department of Mathematics, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
${ }^{\mathrm{e}}$ Department of Business, Marketing \& Distribution, Nakamura Gakuen University, 5-7-1 Befu, Jyonan-ku, Fukuoka 814-0198, Japan

Received 14 June 2000; revised 21 February 2001; accepted 5 March 2001

Abstract

A graph G is called claw-free if G has no induced subgraph isomorphic to $K_{1,3}$. We prove that if G is a claw-free graph with minimum degree at least d, then G has a path factor such that the order of each path is at least $d+1$. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Path factor; Claw-free

1. Introduction

In this paper, we consider finite undirected graphs G without loops or multiple edges.
The complete bipartite graph $K_{1,3}$ is called a claw, and G is said to be claw-free if G has no induced subgraph isomorphic to $K_{1,3}$. A path factor is a spanning subgraph whose components are paths. For a positive integer $k, P_{\geqslant k}$-factor means a path factor such that each component has at least k vertices.

Our main result is the following theorem.

Theorem 1. Let G be a claw-free graph with $\delta(G) \geqslant d$. Then G has a $P_{\geqslant d+1^{-}}$ factor.

[^0]0012-365X/02/\$-see front matter (c) 2002 Elsevier Science B.V. All rights reserved.
PII: S0012-365X(01)00214-X

We now list some of the known results concerning a $P_{\geqslant k}$-factor. Let $i(G)$ denote the number of isolated vertices in a graph G. Let $w(G)$ denote the number of components of a graph G.

The following is a classical result proved by Akiyama et al. [1].

Theorem 2. A graph G has a $P_{\geqslant 2}$-factor if and only if $i(G-S)$ is at most $2|S|$ for every subset S of $V(G)$.

Recently, Kaneko [5] proved the following theorem.

Theorem 3. A graph G has a $P_{\geqslant 3}$-factor if and only if $C_{S}(G-T)$ is at most $2|T|$ for every subset T of $V(G)$, where $C_{S}(G)$ denotes the number of so-called sun components of a graph G (see in [5]).

Very recently, Hanazawa et al. [4] proved the following theorem.

Theorem 4. Let G be a connected bipartite graph of order at least 4. If $w(G-S)$ $<\frac{4}{3}|S|$ for every subset S of $V(G)$ with $|S| \geqslant 2$, then G has a $P_{\geqslant 4 \text {-factor. }}$

The bound " $d+1$ " in Theorem 1 is sharp in the sense that we cannot replace $d+1$ by $d+2$. If we allow G to be disconnected, this can be seen by $K_{d+1} \cup K_{d+1} \cup \cdots$. Even if we require G to be connected, the following examples show the sharpness of the bound $d+1$.

It is easy to see that the graphs above are claw-free graphs with minimum degree at least $d-1$, but have no path-factor not containing a path of order less than or equal to $d+1$.

If we add the assumption " 2 -connected", the bound " $d+1$ " may not be best possible. We conjecture the following.

Conjecture 1. Let G be a 2 -connected claw-free graph with $\delta(G) \geqslant d$. Then G has a $P \geqslant 3 d+3$-factor.

If Conjecture 1 is true, the assumption that the bound " $3 d+3$ " is best possible, is shown by the following example:

It is easy to see that the graph above is a claw-free graph with minimum degree at least d and there is no path factor not containing a path of order less than or equal to $3 d+3$.

For graph theoretic notation not defined in this paper, we refer the reader to [2]. We denote by $\delta(G)$ the minimum degree of a graph G. Let $N_{G}(x)$ denote the set of vertices adjacent to x in G. With a slight abuse of notation, for a subgraph H of G and a vertex $x \in V(G)-V(H), N_{H}(x)=N_{G}(x) \cap V(H)$.

Given a subset $S \subseteq V(G)$, the subgraph of G induced by S is denoted by $G[S]$. For two disjoint subsets A and B of $V(G)$, we denote by $E_{G}(A, B)$ the set of edges of G joining A to B. The number of vertices in a maximum independent set of vertices in G is denoted by $\alpha(G)$.

2. Proof of Theorem 1

In order to prove Theorem 1, we need the following.
Theorem A (Chvátal and Erdős [3]). Let $k \geqslant 1$ be an integer and G a k-connected graph. If $\alpha(G) \leqslant k+1$, then G has a hamiltonian path.

We now prove Theorem 1. Let G be as in Theorem 1. Let P_{1} be a longest path in G and let P_{2} be a longest path in $G-V\left(P_{1}\right)$. By repeating this procedure, we obtain paths P_{1}, \ldots, P_{r} such that $V\left(P_{1} \cup \cdots \cup P_{r}\right)=V(G)$ and $P_{1} \cap \cdots \cap P_{r}=\emptyset$. Possibly, for some q, $\left|V\left(P_{i}\right)\right|=1$ for $q \leqslant i \leqslant r$. Note that $\left|V\left(P_{1}\right)\right| \geqslant \cdots \geqslant\left|V\left(P_{r}\right)\right|$. If $\left|V\left(P_{r}\right)\right| \geqslant d+1$, then the proof is complete. Thus we may assume that $\left|V\left(P_{r}\right)\right| \leqslant d$.

Fig. 1. Proof of Claim 2.
Let u_{i} be an endvertex of P_{i} for $1 \leqslant i \leqslant r-1$. The following claim immediately follows from the maximality of $\left|V\left(P_{i}\right)\right|$.

Claim 1. If $\{w\} \in N_{G}\left(u_{k}\right) \cap V\left(P_{i}\right)$ for $1 \leqslant i<k \leqslant r$, then w is not an endvertex of P_{i}, and $w^{\prime} u_{k}, w^{\prime \prime} u_{k} \notin E(G)$ and $w^{\prime} w^{\prime \prime} \in E(G)$, where w^{\prime} and $w^{\prime \prime}$ are the neighbors of w in P_{i}.

Proof. By the maximality of $\left|V\left(P_{i}\right)\right|, w$ is not an endvertex of P_{i} and $w^{\prime}, w^{\prime \prime} \notin N_{G}\left(u_{k}\right)$. Since $G\left[\left\{w, u_{k}, w^{\prime}, w^{\prime \prime}\right\}\right]$ does not induce a claw, this implies $w^{\prime} w^{\prime \prime} \in E(G)$.

Next, we prove the following claims.
Claim 2. $N_{G}\left(u_{k}\right) \cap N_{G}\left(u_{k^{\prime}}\right)=\emptyset$ for any two endvertices $u_{k} \in P_{k}$ and $u_{k^{\prime}} \in P_{k^{\prime}}$, $1 \leqslant k<k^{\prime} \leqslant r$.

Proof. By way of contradiction, suppose that for some k and k^{\prime} with $1 \leqslant k<k^{\prime} \leqslant r$, $N_{G}\left(u_{k}\right) \cap N_{G}\left(u_{k^{\prime}}\right) \neq \emptyset$. By the maximality of $\left|V\left(P_{j}\right)\right|, N_{G}\left(u_{k}\right) \cap V\left(P_{j}\right)=\emptyset$ for any j with $j>k$. Let $w \in N_{G}\left(u_{k}\right) \cap N_{G}\left(u_{k^{\prime}}\right)$. Then $w \in V\left(P_{l}\right)$ for some l with $1 \leqslant l \leqslant k$. Assume $l<k$. By Claim 1, w is not an endvertex of P_{l}. Let w^{\prime} be a neighbor of w in P_{l}. Again, by Claim $1, u_{k} w^{\prime}, u_{k^{\prime}} w^{\prime} \notin E(G)$. But $G\left[\left\{u_{k}, u_{k^{\prime}}, w, w^{\prime}\right\}\right]$ induces a claw, which contradicts the fact that G is claw-free.

Assume now that $l=k$. By Claim 1, w is not an endvertex of P_{k}. Let w^{\prime} and $w^{\prime \prime}$ be the neighbors of w in P_{l}. By Claim $1, w^{\prime} w^{\prime \prime} \in E(G)$. But we can find a longer path containing $V\left(P_{k}\right) \cup\left\{u_{k^{\prime}}\right\} \cup V\left(P_{k^{\prime}}\right)$. See Fig. 1. This completes the proof.

Claim 3. Let i be an integer with $1 \leqslant i<j \leqslant r$, and write $V\left(P_{i}\right)-\left(\bigcup_{j \leqslant k \leqslant r} N_{G}\left(u_{k}\right)\right)=$ $\left\{z_{1}, \ldots, z_{m}\right\}$ so that z_{1}, \ldots, z_{m} occur on P_{i} in this order. Then, for each t with $1 \leqslant t$ $\leqslant m-1, z_{t} z_{t+1} \in E(G)$.

Proof. We proceed by backward induction on j. If $j=r$, then the result immediately follows from Claim 1. Assume $j<r$. Write $V\left(P_{i}\right)-\left(\bigcup_{j+1 \leqslant k \leqslant r} N_{G}\left(u_{k}\right)\right)=\left\{y_{1}, \ldots, y_{l}\right\}$ so that y_{1}, \ldots, y_{l} occur on P_{i} in this order. By the induction hypothesis, we know that, for each t^{\prime} with $1 \leqslant t^{\prime} \leqslant l-1, y_{t^{\prime}} y_{t^{\prime}+1} \in E(G)$. Take a vertex $y_{s} \in N_{G}\left(u_{j}\right)$. By Claim 1, we know that y_{1} and y_{l} are ends of P_{i}. Hence $s \neq 1, l$. It suffices to prove that

Fig. 2. Proof of Claim 3; the case where n is odd.

Fig. 3. Proof of Claim 3; the case where n is even.
$y_{s-1}, y_{s+1} \notin N_{G}\left(u_{j}\right)$ because if $y_{s-1}, y_{s+1} \notin N_{G}\left(u_{j}\right)$, then, since $G\left[\left\{y_{s-1}, y_{s}, y_{s+1}, u_{j}\right\}\right]$ does not induce a claw, we have $y_{s-1} y_{s+1} \in E(G)$, which implies the conclusion of the claim. Assume $y_{s-1} \in N_{G}\left(u_{j}\right)$ or $y_{s+1} \in N_{G}\left(u_{j}\right)$. Without loss of generality, we may assume $y_{s-1} u_{j} \in E(G)$. Let $\left(p_{2}, \ldots, p_{n}\right)$ be the segment of P_{i} between y_{s-1} and y_{s} with $p_{2}=y_{s-1}$ and $p_{n}=y_{s}$ and let p_{1} be the predecessor of p_{2} on P_{i}. Since $\left\{p_{2}, \ldots, p_{n-1}\right\} \in \bigcup_{j \leqslant k \leqslant r} N_{G}\left(u_{k}\right)$, it follows from Claim 2 that, for any q with $1 \leqslant q \leqslant n-2, \quad p_{q} p_{q+2} \in E(G)$. But, then we can find a longer path P_{i}^{\prime} such that $V\left(P_{i}^{\prime}\right)=V\left(P_{i}\right) \cup\left\{u_{j}\right\}$, which contradicts the choice of P_{i}, see Figs. 2 and 3.

Claim 4. Let i be an integer with $1 \leqslant i \leqslant r$. Then there exists a path P_{i}^{\prime} such that $V\left(P_{i}^{\prime}\right)=\left(V\left(P_{i}\right)-\bigcup_{i+1 \leqslant k \leqslant r} N_{G}\left(u_{k}\right)\right) \cup N_{G}\left(u_{i}\right)$.

Proof. Write $V\left(P_{i}\right)-\left(\bigcup_{i+1 \leqslant k \leqslant r} N_{G}\left(u_{k}\right)\right)=\left\{z_{1}, \ldots, z_{m}\right\}$ so that z_{1}, \ldots, z_{m} occur on P_{i} in this order. Then, by Claim 3, for each t with $1 \leqslant t \leqslant m-1, z_{t} z_{t+1} \in E(G)$. Define a path P^{\prime} by $P^{\prime}=\left(z_{1}, \ldots, z_{m}\right)$. By Claim 1, we may assume $u_{i}=z_{1}$. Since G is claw-free, $\alpha\left(G\left[N_{G-P^{\prime}}\left(u_{i}\right)\right]\right) \leqslant 2$ holds. If $N_{G-P^{\prime}}\left(u_{i}\right)=\emptyset$, then we are done. Thus, we may assume $N_{G-P^{\prime}}\left(u_{i}\right) \neq \emptyset$. If $N_{G-P^{\prime}}\left(u_{i}\right)$ is connected, then $N_{G-P^{\prime}}\left(u_{i}\right)$ has a hamiltonian path Q by Theorem A, and hence we obtain a desired path P_{i}^{\prime} by adding Q to P^{\prime} at u_{i}. Thus, we may assume that $N_{G-P^{\prime}}\left(u_{i}\right)$ is not connected. Since $\alpha\left(N_{G-P^{\prime}}\left(u_{i}\right)\right) \leqslant 2, N_{G-P^{\prime}}\left(u_{i}\right)$ consists of two components A and B, where A and B are complete. Let $V(A)=\left\{a_{1}, \ldots, a_{s}\right\}$ and $V(B)=\left\{b_{1}, \ldots, b_{t}\right\}$. If $P^{\prime}=\left\{u_{i}\right\}$, then we can simply let $P_{i}^{\prime}=a_{1}, \ldots, a_{s}, u_{i}, b_{1}, \ldots, b_{t}$. Thus we may assume $\left|P_{i}\right| \geqslant 2$. Since G is claw-free and $E_{G}(A, B)=\emptyset$, we obtain either $A \subseteq N_{G}\left(z_{2}\right)$ or $B \subseteq N_{G}\left(z_{2}\right)$. Without loss of generality, we may assume $B \subseteq N_{G}\left(z_{2}\right)$.

We now obtain a desired path P_{i}^{\prime} by letting $P_{i}^{\prime}=a_{1}, \ldots, a_{t}, u_{i}, b_{1}, \ldots, b_{s}, z_{2}, z_{3}, \ldots, z_{m}$.

Note that $\left|P_{i}^{\prime}\right| \geqslant d+1$ for any i with $1 \leqslant i \leqslant r$ since $N_{G}\left(u_{i}\right) \subseteq V\left(P_{i}^{\prime}\right)$ by Claim 4 and since $u_{i} \in V\left(P_{i}^{\prime}\right)$ by Claim 1. Further by Claim 2, $V\left(P_{i}^{\prime}\right) \cap V\left(P_{j}^{\prime}\right)=\emptyset$ for any i, j with $1 \leqslant i<j \leqslant k$. Since it immediately follows from Claim 4 that $V(G)=V\left(P_{1}^{\prime} \cup\right.$ $P_{2}^{\prime} \cup \cdots \cup P_{r}^{\prime}$), this means that $P_{1}^{\prime} \cup P_{2}^{\prime} \cup \cdots \cup P_{r}^{\prime}$ form a $P_{\geqslant d+1}$-factor. This completes the proof.

References

[1] J. Akiyama, D. Avis, H. Era, On a \{1,2\}-factor of a graph, TRU Math. 16 (1980) 97-102.
[2] G. Chartrand, L. Lesniak, Graphs \& Digraphs, 3rd edition, Wadsworth \& Brooks/Cole, Monterey, CA, 1996.
[3] V. Chvátal, P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111-113.
[4] A. Hanazawa, K. Kawarabayashi, K. Ota, in preparation.
[5] A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two, preprint.

[^0]: * Corresponding author. Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nahsville, TN 37240-0001, USA.
 E-mail address: k_keniti@comb.math.keio.ac.jp (K. Kawarabayashi).

