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Abstract

A graph G is called claw-free if G has no induced subgraph isomorphic to K1;3. We prove
that if G is a claw-free graph with minimum degree at least d, then G has a path factor such
that the order of each path is at least d+ 1. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we consider 9nite undirected graphs G without loops or multiple edges.
The complete bipartite graph K1;3 is called a claw, and G is said to be claw-free if

G has no induced subgraph isomorphic to K1;3. A path factor is a spanning subgraph
whose components are paths. For a positive integer k, P¿k -factor means a path factor
such that each component has at least k vertices.
Our main result is the following theorem.

Theorem 1. Let G be a claw-free graph with �(G)¿d. Then G has a P¿d+1-
factor.
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We now list some of the known results concerning a P¿k -factor. Let i(G) denote the
number of isolated vertices in a graph G. Let w(G) denote the number of components
of a graph G.
The following is a classical result proved by Akiyama et al. [1].

Theorem 2. A graph G has a P¿2-factor if and only if i(G − S) is at most 2|S| for
every subset S of V (G).

Recently, Kaneko [5] proved the following theorem.

Theorem 3. A graph G has a P¿3-factor if and only if CS(G−T ) is at most 2|T | for
every subset T of V (G); where CS(G) denotes the number of so-called sun components
of a graph G (see in [5]).

Very recently, Hanazawa et al. [4] proved the following theorem.

Theorem 4. Let G be a connected bipartite graph of order at least 4. If w(G − S)
¡ 4

3 |S| for every subset S of V (G) with |S|¿ 2; then G has a P¿4-factor.

The bound “d+1” in Theorem 1 is sharp in the sense that we cannot replace d+1
by d + 2. If we allow G to be disconnected, this can be seen by Kd+1 ∪ Kd+1 ∪ · · ·.
Even if we require G to be connected, the following examples show the sharpness of
the bound d+ 1.

It is easy to see that the graphs above are claw-free graphs with minimum degree at
least d− 1, but have no path-factor not containing a path of order less than or equal
to d+ 1.
If we add the assumption “2-connected”, the bound “d+1” may not be best possible.

We conjecture the following.

Conjecture 1. Let G be a 2-connected claw-free graph with �(G)¿d. Then G has a
P¿3d+3-factor.
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If Conjecture 1 is true, the assumption that the bound “3d+ 3” is best possible, is
shown by the following example:

It is easy to see that the graph above is a claw-free graph with minimum degree at
least d and there is no path factor not containing a path of order less than or equal to
3d+ 3.
For graph theoretic notation not de9ned in this paper, we refer the reader to [2].

We denote by �(G) the minimum degree of a graph G. Let NG(x) denote the set of
vertices adjacent to x in G. With a slight abuse of notation, for a subgraph H of G
and a vertex x∈V (G)− V (H), NH (x)=NG(x) ∩ V (H).

Given a subset S ⊆ V (G), the subgraph of G induced by S is denoted by G[S]. For
two disjoint subsets A and B of V (G), we denote by EG(A; B) the set of edges of G
joining A to B. The number of vertices in a maximum independent set of vertices in
G is denoted by �(G).

2. Proof of Theorem 1

In order to prove Theorem 1, we need the following.

Theorem A (ChvNatal and Erdős [3]). Let k¿ 1 be an integer and G a k-connected
graph. If �(G)6 k + 1; then G has a hamiltonian path.

We now prove Theorem 1. Let G be as in Theorem 1. Let P1 be a longest path in G
and let P2 be a longest path in G−V (P1). By repeating this procedure, we obtain paths
P1; : : : ; Pr such that V (P1∪· · ·∪Pr)=V (G) and P1∩· · ·∩Pr = ∅. Possibly, for some q,
|V (Pi)|=1 for q6 i6 r. Note that |V (P1)|¿ · · ·¿ |V (Pr)|. If |V (Pr)|¿d+ 1, then
the proof is complete. Thus we may assume that |V (Pr)|6d.
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Fig. 1. Proof of Claim 2.

Let ui be an endvertex of Pi for 16 i6 r − 1. The following claim immediately
follows from the maximality of |V (Pi)|.

Claim 1. If {w}∈NG(uk) ∩ V (Pi) for 16 i¡ k6 r; then w is not an endvertex of
Pi; and w′uk ; w′′uk �∈ E(G) and w′w′′ ∈E(G); where w′ and w′′ are the neighbors of
w in Pi.

Proof. By the maximality of |V (Pi)|, w is not an endvertex of Pi and w′; w′′ �∈ NG(uk).
Since G[{w; uk ; w′; w′′}] does not induce a claw, this implies w′w′′ ∈E(G).

Next, we prove the following claims.

Claim 2. NG(uk) ∩ NG(uk′)= ∅ for any two endvertices uk ∈Pk and uk′ ∈Pk′ ,
16 k ¡k ′6 r.

Proof. By way of contradiction, suppose that for some k and k ′ with 16 k ¡k ′6 r,
NG(uk)∩NG(uk′) �= ∅. By the maximality of |V (Pj)|, NG(uk)∩V (Pj)= ∅ for any j with
j¿k. Let w∈NG(uk)∩NG(uk′). Then w∈V (Pl) for some l with 16 l6 k. Assume
l¡k. By Claim 1, w is not an endvertex of Pl. Let w′ be a neighbor of w in Pl.
Again, by Claim 1, ukw′; uk′w′ �∈ E(G). But G[{uk ; uk′ ; w; w′}] induces a claw, which
contradicts the fact that G is claw-free.
Assume now that l= k. By Claim 1, w is not an endvertex of Pk . Let w′ and w′′

be the neighbors of w in Pl. By Claim 1, w′w′′ ∈E(G). But we can 9nd a longer path
containing V (Pk) ∪ {uk′} ∪ V (Pk′). See Fig. 1. This completes the proof.

Claim 3. Let i be an integer with 16 i¡ j6 r; and write V (Pi)−(
⋃

j6k6r NG(uk))=
{z1; : : : ; zm} so that z1; : : : ; zm occur on Pi in this order. Then; for each t with 16 t
6m− 1; ztzt+1 ∈E(G).

Proof. We proceed by backward induction on j. If j= r, then the result immediately
follows from Claim 1. Assume j¡ r. Write V (Pi)− (

⋃
j+16k6r NG(uk))= {y1; : : : ; yl}

so that y1; : : : ; yl occur on Pi in this order. By the induction hypothesis, we know that,
for each t′ with 16 t′6 l−1, yt′yt′+1 ∈E(G). Take a vertex ys ∈NG(uj). By Claim 1,
we know that y1 and yl are ends of Pi. Hence s �=1; l. It suQces to prove that
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Fig. 2. Proof of Claim 3; the case where n is odd.

Fig. 3. Proof of Claim 3; the case where n is even.

ys−1; ys+1 �∈ NG(uj) because if ys−1; ys+1 �∈ NG(uj), then, since G[{ys−1; ys; ys+1; uj}]
does not induce a claw, we have ys−1ys+1 ∈E(G), which implies the conclusion of
the claim. Assume ys−1 ∈NG(uj) or ys+1 ∈NG(uj). Without loss of generality, we
may assume ys−1uj ∈E(G). Let (p2; : : : ; pn) be the segment of Pi between ys−1

and ys with p2 =ys−1 and pn=ys and let p1 be the predecessor of p2 on Pi.
Since {p2; : : : ; pn−1}∈

⋃
j6k6r NG(uk), it follows from Claim 2 that, for any q with

16 q6 n − 2, pqpq+2 ∈E(G). But, then we can 9nd a longer path P′
i such that

V (P′
i )=V (Pi) ∪ {uj}, which contradicts the choice of Pi, see Figs. 2 and 3.

Claim 4. Let i be an integer with 16 i6 r. Then there exists a path P′
i such that

V (P′
i )= (V (Pi)−

⋃
i+16k6r NG(uk)) ∪ NG(ui).

Proof. Write V (Pi)− (
⋃

i+16k6r NG(uk))= {z1; : : : ; zm} so that z1; : : : ; zm occur on Pi
in this order. Then, by Claim 3, for each t with 16 t6m−1, ztzt+1 ∈E(G). De9ne a
path P′ by P′ =(z1; : : : ; zm). By Claim 1, we may assume ui = z1. Since G is claw-free,
�(G[NG−P′(ui)])6 2 holds. If NG−P′(ui)= ∅, then we are done. Thus, we may assume
NG−P′(ui) �= ∅. If NG−P′(ui) is connected, then NG−P′(ui) has a hamiltonian path Q by
Theorem A, and hence we obtain a desired path P′

i by adding Q to P′ at ui. Thus, we
may assume that NG−P′(ui) is not connected. Since �(NG−P′(ui))6 2, NG−P′(ui) con-
sists of two components A and B, where A and B are complete. Let V (A)= {a1; : : : ; as}
and V (B)= {b1; : : : ; bt}. If P′ = {ui}, then we can simply let P′

i = a1; : : : ; as; ui; b1; : : : ; bt .
Thus we may assume |Pi|¿ 2. Since G is claw-free and EG(A; B)= ∅, we obtain either
A ⊆ NG(z2) or B ⊆ NG(z2). Without loss of generality, we may assume B ⊆ NG(z2).
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We now obtain a desired path P′
i by letting P′

i = a1; : : : ; at ; ui; b1; : : : ; bs; z2; z3; : : : ; zm.

Note that |P′
i |¿d + 1 for any i with 16 i6 r since NG(ui) ⊆ V (P′

i ) by Claim 4
and since ui ∈V (P′

i ) by Claim 1. Further by Claim 2, V (P′
i ) ∩ V (P′

j)= ∅ for any i; j
with 16 i¡ j6 k. Since it immediately follows from Claim 4 that V (G)=V (P′

1 ∪
P′
2 ∪ · · · ∪ P′

r), this means that P′
1 ∪ P′

2 ∪ · · · ∪ P′
r form a P¿d+1-factor. This completes

the proof.
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