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Abstract
A graph G is called claw-free if G has no induced subgraph isomorphic to K 3. We prove
that if G is a claw-free graph with minimum degree at least d, then G has a path factor such

that the order of each path is at least d + 1. (©) 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we consider finite undirected graphs G without loops or multiple edges.

The complete bipartite graph K| 3 is called a claw, and G is said to be claw-free if
G has no induced subgraph isomorphic to K 3. A path factor is a spanning subgraph
whose components are paths. For a positive integer k, P j-factor means a path factor
such that each component has at least £ vertices.

Our main result is the following theorem.

Theorem 1. Let G be a claw-free graph with 6(G)>=d. Then G has a Px4.1-
factor.
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We now list some of the known results concerning a P ;-factor. Let i(G) denote the
number of isolated vertices in a graph G. Let w(G) denote the number of components
of a graph G.

The following is a classical result proved by Akiyama et al. [1].

Theorem 2. 4 graph G has a Px,-factor if and only if i(G — S) is at most 2|S| for
every subset S of V(G).

Recently, Kaneko [5] proved the following theorem.

Theorem 3. A4 graph G has a Pxs-factor if and only if Cs(G—T) is at most 2|T| for
every subset T of V(G), where Cs(G) denotes the number of so-called sun components
of a graph G (see in [5]).

Very recently, Hanazawa et al. [4] proved the following theorem.

Theorem 4. Let G be a connected bipartite graph of order at least 4. If w(G — S)
< §|S| for every subset S of V(G) with |S| = 2, then G has a Ps4-factor.

The bound “d + 1” in Theorem 1 is sharp in the sense that we cannot replace d + 1
by d 4 2. If we allow G to be disconnected, this can be seen by Ky UKy U---.
Even if we require G to be connected, the following examples show the sharpness of
the bound d + 1.

It is easy to see that the graphs above are claw-free graphs with minimum degree at
least d — 1, but have no path-factor not containing a path of order less than or equal
to d+ 1.

If we add the assumption “2-connected”, the bound “d +1” may not be best possible.
We conjecture the following.

Conjecture 1. Let G be a 2-connected claw-free graph with 6(G) = d. Then G has a
P 3443-factor.
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If Conjecture 1 is true, the assumption that the bound “3d 4 3” is best possible, is
shown by the following example:

It is easy to see that the graph above is a claw-free graph with minimum degree at
least d and there is no path factor not containing a path of order less than or equal to
3d + 3.

For graph theoretic notation not defined in this paper, we refer the reader to [2].
We denote by §(G) the minimum degree of a graph G. Let Ng(x) denote the set of
vertices adjacent to x in G. With a slight abuse of notation, for a subgraph H of G
and a vertex x € V(G) — V(H), Nu(x)=Ng(x) N V(H).

Given a subset S C V(G), the subgraph of G induced by S is denoted by G[S]. For
two disjoint subsets 4 and B of V(G), we denote by Eg(4,B) the set of edges of G
joining A to B. The number of vertices in a maximum independent set of vertices in
G is denoted by a(G).

2. Proof of Theorem 1

In order to prove Theorem 1, we need the following.

Theorem A (Chvatal and Erdos [3]). Let k = 1 be an integer and G a k-connected
graph. If o(G) <k + 1, then G has a hamiltonian path.

We now prove Theorem 1. Let G be as in Theorem 1. Let P; be a longest path in G
and let P, be a longest path in G— V' (P}). By repeating this procedure, we obtain paths
Py,...,P. such that V(PyU---UP,)=V(G) and P N---NP,={. Possibly, for some g,
[V(P;)|=1 for ¢ <i<r. Note that |V(Py)| = --- = |V(P,)|. If |V(P,)| =d+ 1, then
the proof is complete. Thus we may assume that |V (P,)| < d.
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Fig. 1. Proof of Claim 2.

Let u; be an endvertex of P; for 1 <i <r — 1. The following claim immediately
follows from the maximality of |V(P;)|.

Claim 1. If {w} e Ng(u) N V(P;) for 1 <i <k <r, then w is not an endvertex of
P;, and wue, w'u, & E(G) and w'w'" € E(G), where w' and w" are the neighbors of

Proof. By the maximality of |V/(P;)|, w is not an endvertex of P; and w',w” & Ng(uy).
Since G[{w, ug,w',w"}] does not induce a claw, this implies w'w” € E(G). O

Next, we prove the following claims.

Claim 2. Ng(u) N Ng(up)=0 for any two endvertices u, € Py and wuy € Py,
1<k<k <7

Proof. By way of contradiction, suppose that for some k and &’ with 1 <k <k’ <r,
N (ug)NNg(ug ) # 0. By the maximality of [V (P;)|, No(ux )NV (P;)=0 for any j with
j>k. Let we Ng(ux) N Ng(uys). Then we V(P;) for some / with 1 </ < k. Assume
[ < k. By Claim 1, w is not an endvertex of P;,. Let w' be a neighbor of w in P,.
Again, by Claim 1, uyw',upw’ &€ E(G). But G[{uy,ur, w,w'}] induces a claw, which
contradicts the fact that G is claw-free.

Assume now that /=Fk. By Claim 1, w is not an endvertex of P;. Let w’ and w”
be the neighbors of w in P;. By Claim 1, w'w” € E(G). But we can find a longer path
containing V' (P) U {uy } U V(Py). See Fig. 1. This completes the proof. [

Claim 3. Let i be an integer with 1 <i < j <r, and write V(P,)—(UKKV Ng(up)) =
{z1,...,zm} SO that z\,...,z, occur on P; in this order. Then, for each t with 1 <t
<m-—1, z;zi4 € E(G).

Proof. We proceed by backward induction on j. If j=r, then the result immediately
follows from Claim 1. Assume j < r. Write V(7)) — (U, 1<k <, No(u))={»1,.... v}
so that yy,..., y; occur on P; in this order. By the induction hypothesis, we know that,
for each ¢' with 1 <t <1—1, yyyry1 € E(G). Take a vertex y; € Ng(u;). By Claim 1,
we know that y; and y; are ends of P;. Hence s#1,/. It suffices to prove that
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Fig. 2. Proof of Claim 3; the case where n is odd.
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Fig. 3. Proof of Claim 3; the case where n is even.

Vs—1 Vs+1 & Ng(u;) because if yo_1, ysi1 & No(u;), then, since G[{ys—1, Vs, Vi1, 1;}]
does not induce a claw, we have y,_;y,+| € E(G), which implies the conclusion of
the claim. Assume y,_; € Ng(u;) or ysi1 € Ng(u;). Without loss of generality, we
may assume y,_iu; € E(G). Let (pa,..., p,) be the segment of P; between y,_;
and y, with p,=y, | and p,=y, and let p; be the predecessor of p, on P;.
Since {p2,..., pu—1} € Ujgkgr Ng(uy), it follows from Claim 2 that, for any g with
1<qg<n-—2, pjps+»€E(G). But, then we can find a longer path P; such that
V(P])=V(P;) U{u;}, which contradicts the choice of P;, see Figs. 2 and 3. [J

Claim 4. Let i be an integer with 1 <i <r. Then there exists a path P! such that
V(P))=V(Pi) — Uip1 <k<r No(ur)) U Ne(u;).

Proof. Write V(P;) — (U1 <k <, No(ux))={z1,...,2n} so that z,...,z, occur on P;
in this order. Then, by Claim 3, for each ¢ with 1 <t <m—1, z;z,.1 € E(G). Define a
path P’ by P/ =(zi,...,z,). By Claim 1, we may assume u; =z,. Since G is claw-free,
o(G[Ng_pr(u;)]) < 2 holds. If Ng_p/(u;) =0, then we are done. Thus, we may assume
Ng_p(u;)# 0. If Ng_pr(u;) is connected, then Ng_p/(u;) has a hamiltonian path O by
Theorem A, and hence we obtain a desired path P] by adding Q to P’ at u;. Thus, we
may assume that Ng_p/(u;) is not connected. Since a(Ng—_p:(u;)) < 2, Ng—p/(u;) con-
sists of two components 4 and B, where 4 and B are complete. Let V(4)={ay,...,a,}
and V(B)={by,...,b;}. If P"={u;}, then we can simply let P! =ay,..., a5 u;, b1, ..., b;.
Thus we may assume |P;| = 2. Since G is claw-free and Eg(4, B) =0, we obtain either
A C Ng(z2) or B C Ng(z2). Without loss of generality, we may assume B C Ng(z2).
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We now obtain a desired path P} by letting P/ =ay,...,as,u;,b1,...,b5,22,23,. .., Zp.
O

Note that |P!| = d + 1 for any i with 1 <i <r since Ng(u;) C V(P}) by Claim 4
and since u; € V(P;) by Claim 1. Further by Claim 2, V'(P]) N V(P})=0 for any i,
with 1 <i<j <k. Since it immediately follows from Claim 4 that V(G)=V(P| U
Py U---UP)), this means that P{ UPJU---UP] form a P44 -factor. This completes
the proof. [
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