812 research outputs found

    Air Conditioner User Behavior in a Master-Metered Apartment Building

    Get PDF
    Air conditioner operation was studied in order to understand how energy consumption and peak power are determined by user behavior, equipment operation and building characteristics. In a multi-family building, thirteen room air conditioners were instrumented in eight apartments, and interviews were conducted with the residents about their operation of the units. The predominant mode of operation was to switch the unit on and off manually; only one resident consistently let it operate thermostatically, and many residents were not aware that the unit had a thermostat. Ambient temperature and time of day were observed to have major effects on the occupant's decision to turn the unit on or off. Even though residents did not pay for electricity, numerous noneconomic factors were found to limit their use of air conditioning. Across apartments, seasonal air conditioner energy consumption varies by two orders of magnitude while interior July temperature varies by 3.7°C

    PCR and FISH Detection Extends the Range of Pfiesteria piscicida in Estuarine Waters

    Get PDF
    PCR and fluorescent in situ hybridization probes were used to assay for the presence of the dinoflagellate Pfiesteria piscicida in 170 estuarine water samples collected from New York to northern Florida. 20% of samples tested positive for the presence of P. piscicida, including sites where fish kills due to Pfiesteria have occurred and sites where there was no historical evidence of such events. The results extend the known range of P. piscicida northward to Long Island, New York. The results also suggest that P. piscicida is common, and normally benign, inhabitatant of estuarine waters of the eastern US

    Helicopter Flight Test of a Compact, Real-Time 3-D Flash Lidar for Imaging Hazardous Terrain During Planetary Landing

    Get PDF
    A second generation, compact, real-time, air-cooled 3-D imaging Flash Lidar sensor system, developed from a number of cutting-edge components from industry and NASA, is lab characterized and helicopter flight tested under the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project. The ALHAT project is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar incorporates a 3-D imaging video camera based on Indium-Gallium-Arsenide Avalanche Photo Diode and novel micro-electronic technology for a 128 x 128 pixel array operating at a video rate of 20 Hz, a high pulse-energy 1.06 m Neodymium-doped: Yttrium Aluminum Garnet (Nd:YAG) laser, a remote laser safety termination system, high performance transmitter and receiver optics with one and five degrees field-of-view (FOV), enhanced onboard thermal control, as well as a compact and self-contained suite of support electronics housed in a single box and built around a PC-104 architecture to enable autonomous operations. The Flash Lidar was developed and then characterized at two NASA-Langley Research Center (LaRC) outdoor laser test range facilities both statically and dynamically, integrated with other ALHAT GN&C subsystems from partner organizations, and installed onto a Bell UH-1H Iroquois "Huey" helicopter at LaRC. The integrated system was flight tested at the NASA-Kennedy Space Center (KSC) on simulated lunar approach to a custom hazard field consisting of rocks, craters, hazardous slopes, and safe-sites near the Shuttle Landing Facility runway starting at slant ranges of 750 m. In order to evaluate different methods of achieving hazard detection, the lidar, in conjunction with the ALHAT hazard detection and GN&C system, operates in both a narrow 1deg FOV raster-scanning mode in which successive, gimbaled images of the hazard field are mosaicked together as well as in a wider, 4.85deg FOV staring mode in which digital magnification, via a novel 3-D superresolution technique, is used to effectively achieve the same spatial precision attained with the more narrow FOV optics. The lidar generates calibrated and corrected 3-D range images of the hazard field in real-time and passes them to the ALHAT Hazard Detection System (HDS) which stitches the images together to generate on-the-fly Digital Elevation Maps (DEM's) and identifies hazards and safe-landing sites which the ALHAT GN&C system can then use to guide the host vehicle to a safe landing on the selected site. Results indicate that, for the KSC hazard field, the lidar operational range extends from 100m to 1.35 km for a 30 degree line-of-sight angle and a range precision as low as 8 cm which permits hazards as small as 25 cm to be identified. Based on the Flash Lidar images, the HDS correctly found and reported safe sites in near-real-time during several of the flights. A follow-on field test, planned for 2013, seeks to complete the closing of the GN&C loop for fully-autonomous operations on-board the Morpheus robotic, rocket-powered, free-flyer test bed in which the ALHAT system would scan the KSC hazard field (which was vetted during the present testing) and command the vehicle to landing on one of the selected safe sites

    Influence of Air Conditioner Operation on Electricity Use and Peak Demand

    Get PDF
    Electricity demand due to occupant controlled room air conditioners in a large mater-metered apartment building is analyzed. Hourly data on the electric demand of the building and of individual air conditioners are used in analyses of annual and time-of-day peaks. Effects of occupant schedules and behavior are examined. We conclude that room air conditioners cause a sharp annual peak demand because occupants have strongly varying thresholds with respect to toleration of high indoor temperatures. However, time-or-day peaking is smoothed by air conditioning in this building due to significant off-peak operation of air conditioners by some occupants. If occupants were billed directly for electricity, off-peak use would probably diminish making the peaks more pronounced and exacerbating the utility company's load management problems. Future studies of this type in individually metered apartment buildings are recommended

    The neglected social dimensions to a vehicle-to-grid (V2G) transition: a critical and systematic review

    Get PDF
    Vehicle-to-grid (V2G) refers to efforts to bi-directionally link the electric power system and the transportation system in ways that can improve the sustainability and security of both. A transition to V2G could enable vehicles to simultaneously improve the efficiency (and profitability) of electricity grids, reduce greenhouse gas emissions for transport, accommodate low-carbon sources of energy, and reap cost savings for owners, drivers, and other users. To understand the recent state of this field of research, here we conduct a systematic review of 197 peer-reviewed articles published on V2G from 2015 to early 2017. We find that the majority of V2G studies in that time period focus on technical aspects of V2G, notably renewable energy storage, batteries, or load balancing to minimize electricity costs, in some cases including environmental goals as constraints. A much lower proportion of studies focus on the importance of assessing environmental and climate attributes of a V2G transition, or on the role of consumer acceptance and knowledge of V2G systems. Further, there is need for exploratory work on natural resource use and externalities, discourses and narratives as well as social justice, gender, and urban resilience considerations. These research gaps need to be addressed if V2G is to achieve the societal transition its advocates seek

    CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling

    Get PDF
    CRISPR-Cas9 is a versatile genome editing technology for studying the functions of genetic elements. To broadly enable the application of Cas9 in vivo, we established a Cre-dependent Cas9 knockin mouse. We demonstrated in vivo as well as ex vivo genome editing using adeno-associated virus (AAV)-, lentivirus-, or particle-mediated delivery of guide RNA in neurons, immune cells, and endothelial cells. Using these mice, we simultaneously modeled the dynamics of KRAS, p53, and LKB1, the top three significantly mutated genes in lung adenocarcinoma. Delivery of a single AAV vector in the lung generated loss-of-function mutations in p53 and Lkb1, as well as homology-directed repair-mediated Kras[superscript G12D] mutations, leading to macroscopic tumors of adenocarcinoma pathology. Together, these results suggest that Cas9 mice empower a wide range of biological and disease modeling applications.National Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374)Damon Runyon Cancer Research Foundation (Fellowship DRG-2117-12)Massachusetts Institute of Technology. Simons Center for the Social Brain (Postdoctoral Fellowship)European Molecular Biology Organization (Fellowship)Foundation for Polish Science (Fellowship)American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipNational Science Foundation (U.S.). Graduate Research FellowshipMassachusetts Institute of Technology (Presidential Graduate Fellowship)Human Frontier Science Program (Strasbourg, France) (Postdoctoral Fellowship)National Human Genome Research Institute (U.S.) (CEGS P50 HG006193)Howard Hughes Medical InstituteKlarman Cell ObservatoryNational Cancer Institute (U.S.) (Center of Cancer Nanotechnology Excellence Grant U54CA151884)National Institutes of Health (U.S.) (Controlled Release Grant EB000244)National Heart, Lung, and Blood Institute (Program of Excellence in Nanotechnology (PEN) Award Contract HHSN268201000045C)Massachusetts Institute of Technology (Poitras Gift 1631119)Stanley CenterSimons Foundation (6927482)Nancy Lurie Marks Family Foundation (6928117)United States. Public Health Service (National Institutes of Health (U.S.) R01-CA133404)David H. Koch Institute for Integrative Cancer Research at MIT (Marie D. and Pierre Casimir-Lambert Fund)MIT Skoltech InitiativeNational Cancer Institute (U.S.) (Koch Institute Support (Core) Grant P30-CA14051)National Institute of Mental Health (U.S.) (Director’s Pioneer Award DP1-MH100706)National Institute of Neurological Disorders and Stroke (U.S.) (Transformative R01 Grant R01-NS 07312401)National Science Foundation (U.S.) (Waterman Award)W. M. Keck FoundationKinship Foundation. Searle Scholars ProgramKlingenstein FoundationVallee FoundationMerkin Foundatio

    The sustainable worldwide offshore wind energy potential: A systematic review

    Get PDF
    The offshore wind industry is expanding rapidly around the world due to several factors enabling this source of renewable energy. Stronger wind resources in offshore areas, lack of social and geographical constraints related to onshore wind power, the evolution of technology, and increasing demand for electricity in coastal regions as a result of a massive increase in population are some of the factors favoring the use of wind energy. The assessment of the potential global capacity that considers the different economic, environmental, and social factors and the dynamics of market, policy, and technology are vital for estimating the competitiveness of offshore wind energy in the future energy profile. There are several studies and technical reports that evaluate the potential of offshore wind energy in different countries or regions. They used a different source of data, metrics, and quantitative approaches in appraising the potential offshore wind power capacity and its cost efficiency. The critical factors that have been considered are geographical, technical, economic, environmental, and social and market elements. This paper provides a systematic review for analyzing the studies that address the potential offshore wind energy around the world and published during the 2000–2016 period. This study highlights the key criteria for assessing the potential for offshore wind energy deployment and the related tools and methods

    Which executive functioning deficits are associated with AD/HD, ODD/CD and comorbid AD/HD+ODD/CD?

    Get PDF
    Item does not contain fulltextThis study investigated (1) whether attention deficit/hyperactivity disorder (AD/HD) is associated with executive functioning (EF) deficits while controlling for oppositional defiant disorder/conduct disorder (ODD/CD), (2) whether ODD/CD is associated with EF deficits while controlling for AD/HD, and (3)~whether a combination of AD/HD and ODD/CD is associated with EF deficits (and the possibility that there is no association between EF deficits and AD/HD or ODD/CD in isolation). Subjects were 99~children ages 6–12 years. Three putative domains of EF were investigated using well-validated tests: verbal fluency, working memory, and planning. Independent of ODD/CD, AD/HD was associated with deficits in planning and working memory, but not in verbal fluency. Only teacher rated AD/HD, but not parent rated AD/HD, significantly contributed to the prediction of EF task performance. No EF deficits were associated with ODD/CD. The presence of comorbid AD/HD accounts for the EF deficits in children with comorbid AD/HD+ODD/CD. These results suggest that EF deficits are unique to AD/HD and support the model proposed by R. A. Barkley (1997).17 p

    Isotopic evolution of prehistoric magma sources of Mt. Etna, Sicily: Insights from the Valle Del Bove

    Get PDF
    Mount Etna in NE Sicily occupies an unusual tectonic position in the convergence zone between the African and Eurasian plates, near the Quaternary subduction-related Aeolian arc and above the down-going Ionian oceanic slab. Magmatic evolution broadly involves a transition from an early tholeiitic phase (~ 500 ka) to the current alkaline phase. Most geochemical investigations have focussed on either historic (> 130-years old) or recent (< 130-years old) eruptions of Mt. Etna or on the ancient basal lavas (ca. 500 ka). In this study, we have analysed and modelled the petrogenesis of alkalic lavas from the southern wall of the Valle del Bove, which represent a time span of Mt. Etna’s prehistoric magmatic activity from ~ 85 to ~ 4 ka. They exhibit geochemical variations that distinguish them as six separate lithostratigraphic and volcanic units. Isotopic data (143Nd/144Nd = 0.51283–0.51291; 87Sr/86Sr = 0.70332–0.70363; 176Hf/177Hf = 0.28288–0.28298; 206Pb/204Pb = 19.76–20.03) indicate changes in the magma source during the ~ 80 kyr of activity that do not follow the previously observed temporal trend. The oldest analysed Valle del Bove unit (Salifizio-1) erupted basaltic trachyandesites with variations in 143Nd/144Nd and 87Sr/86Sr ratios indicating a magma source remarkably similar to that of recent Etna eruptions, while four of the five subsequent units have isotopic compositions resembling those of historic Etna magmas. All five magma batches are considered to be derived from melting of a mixture of spinel lherzolite and pyroxenite (± garnet). In contrast, the sixth unit, the main Piano Provenzana formation (~ 42–30 ka), includes the most evolved trachyandesitic lavas (58–62 wt% SiO2) and exhibits notably lower 176Hf/177Hf, 143Nd/144Nd, and 206Pb/204Pb ratios than the other prehistoric Valle del Bove units. This isotopic signature has not yet been observed in any other samples from Mt. Etna and we suggest that the parental melts of the trachyandesites were derived predominantly from ancient pyroxenite in the mantle source of Etna
    corecore