1,398 research outputs found

    Long-term storage and age‐biased export of fluvial organic carbon: field evidence from West Iceland

    Get PDF
    Terrestrial organic carbon (OC) plays an important role in the carbon cycle, but questions remain regarding the controls and timescale(s) over which atmospheric CO₂ remains sequestered as particulate OC (POC). Motivated by observations that terrestrial POC is physically stored within soils and other shallow sedimentary deposits, we examined the role that sediment storage plays in the terrestrial OC cycle. Specifically, we tested the hypothesis that sediment storage impacts the age of terrestrial POC. We focused on the Efri Haukadalsá River catchment in Iceland as it lacks ancient sedimentary bedrock that would otherwise bias radiocarbon‐based determinations of POC storage duration by supplying pre‐aged “petrogenic” POC. Our radiocarbon measurements of riverine suspended sediments and deposits implicated millennial‐scale storage times. Comparison between the sample types (suspended and deposits) suggested an age offset between transported (suspended sediments) and stored (deposits) POC at the time of sampling, which is predicted by theory for the sediment age distribution in floodplains. We also observed that POC in suspended sediments is younger than the predicted mean storage duration generated from independent geomorphological data, which suggested an additional role for OC cycling. Consistent with this, we observed interparticle heterogeneity in the composition of POC by imaging our samples at the microscale using X‐ray absorption spectroscopy. Specifically, we found that particles within individual samples differed in their sulfur oxidation state, which is indicative of multiple origins and/or diagenetic histories. Altogether, our results support recent coupled sediment storage and OC cycling models and indicate that the physical drivers of sediment storage are important factors controlling the cadence of carbon cycling

    Zero-Reachability in Probabilistic Multi-Counter Automata

    Full text link
    We study the qualitative and quantitative zero-reachability problem in probabilistic multi-counter systems. We identify the undecidable variants of the problems, and then we concentrate on the remaining two cases. In the first case, when we are interested in the probability of all runs that visit zero in some counter, we show that the qualitative zero-reachability is decidable in time which is polynomial in the size of a given pMC and doubly exponential in the number of counters. Further, we show that the probability of all zero-reaching runs can be effectively approximated up to an arbitrarily small given error epsilon > 0 in time which is polynomial in log(epsilon), exponential in the size of a given pMC, and doubly exponential in the number of counters. In the second case, we are interested in the probability of all runs that visit zero in some counter different from the last counter. Here we show that the qualitative zero-reachability is decidable and SquareRootSum-hard, and the probability of all zero-reaching runs can be effectively approximated up to an arbitrarily small given error epsilon > 0 (these result applies to pMC satisfying a suitable technical condition that can be verified in polynomial time). The proof techniques invented in the second case allow to construct counterexamples for some classical results about ergodicity in stochastic Petri nets.Comment: 20 page

    Micromagnetic understanding of stochastic resonance driven by spin-transfertorque

    Full text link
    In this paper, we employ micromagnetic simulations to study non-adiabatic stochastic resonance (NASR) excited by spin-transfer torque in a super-paramagnetic free layer nanomagnet of a nanoscale spin valve. We find that NASR dynamics involves thermally activated transitions among two static states and a single dynamic state of the nanomagnet and can be well understood in the framework of Markov chain rate theory. Our simulations show that a direct voltage generated by the spin valve at the NASR frequency is at least one order of magnitude greater than the dc voltage generated off the NASR frequency. Our computations also reproduce the main experimentally observed features of NASR such as the resonance frequency, the temperature dependence and the current bias dependence of the resonance amplitude. We propose a simple design of a microwave signal detector based on NASR driven by spin transfer torque.Comment: 25 pages 8 figures, accepted for pubblication on Phys. Rev.

    Quantitative multi-objective verification for probabilistic systems

    Get PDF
    We present a verification framework for analysing multiple quantitative objectives of systems that exhibit both nondeterministic and stochastic behaviour. These systems are modelled as probabilistic automata, enriched with cost or reward structures that capture, for example, energy usage or performance metrics. Quantitative properties of these models are expressed in a specification language that incorporates probabilistic safety and liveness properties, expected total cost or reward, and supports multiple objectives of these types. We propose and implement an efficient verification framework for such properties and then present two distinct applications of it: firstly, controller synthesis subject to multiple quantitative objectives; and, secondly, quantitative compositional verification. The practical applicability of both approaches is illustrated with experimental results from several large case studies

    A pikkelysömör es a stressz közötti összefüggés pszichológiai és biológiai alapjai

    Get PDF
    Stress is considered as a major contributor to the development and exacerbation of psoriasis by a significant proportion of patients and dermatologists. As both stressor and its effects are subject-dependent, thus extremely difficult to measure, our understanding of the exact role of stress in disease development was limited for a long time. In the past decade several new studies were carried out which expanded our knowledge on the pathophysiologic processes linking stress to psoriasis via with their objective measurements and the applied new techniques. The authors review the current literature of both psychological (alexithymia, personality, affect) and biological (cortisol, epinephrine, neurogenic inflammation) factors influencing stress perception and response in psoriasis. Results of recent investigations support previous reports about the interaction between stress and psoriasis with objective evidence. Knowing how effective stress-reducing psychopharmacologic and psychotherapeutic interventions are in the treatment of psoriasis the authors hope that this review contributes to a wider acceptance of the psychosomatic attitude in everyday dermatologic practice. Orv. Hetil., 2014, 155(24), 939-948

    Система электропривода задвижки паропровода

    Get PDF
    INTRODUCTION: Encephalitis is a rare complication of primary varicella-zoster virus (VZV) infection in immunocompetent children. METHODS: The clinical and laboratory findings of two girls with VZV-related encephalitis are reported. RESULTS: Both children presented with focal epileptic seizures, corresponding to cortical/subcortical as well as white matter lesions. The first showed a typical vesicular skin rash. She was easily diagnosed and made a rapid recovery during acyclovir and steroid treatment. In the second girl, a preceding measles-mumps-rubella virus vaccination and the absence of skin vesicles were misleading with respect to the diagnosis, which was finally proven by IgG seroconversion and intrathecal synthesis of IgG antibodies to VZV. She developed left parieto-occipital tissue necrosis and recovered only transiently during initial acyclovir/steroid treatment. Eight weeks after onset, progressive white matter demyelination and the occurrence of erythema nodosum in the lower limbs necessitated a second 4-month course of oral steroids. The VZV PCR from cerebrospinal fluid was negative in both children. CONCLUSIONS: Primary VZV infection may cause severe encephalitis that may occur without skin vesicles and lead to a chronic course with systemic vasculitis. The coincidence of vaccination and neurologic diseases offers no proof per se of a causal relationship

    Link Prediction Based on Local Random Walk

    Get PDF
    The problem of missing link prediction in complex networks has attracted much attention recently. Two difficulties in link prediction are the sparsity and huge size of the target networks. Therefore, the design of an efficient and effective method is of both theoretical interests and practical significance. In this Letter, we proposed a method based on local random walk, which can give competitively good prediction or even better prediction than other random-walk-based methods while has a lower computational complexity.Comment: 6 pages, 2 figure

    Long-Range Navigation on Complex Networks using L\'evy Random Walks

    Full text link
    We introduce a strategy of navigation in undirected networks, including regular, random, and complex networks, that is inspired by L\'evy random walks, generalizing previous navigation rules. We obtained exact expressions for the stationary probability distribution, the occupation probability, the mean first passage time, and the average time to reach a node on the network. We found that the long-range navigation using the L\'evy random walk strategy, compared with the normal random walk strategy, is more efficient at reducing the time to cover the network. The dynamical effect of using the L\'evy walk strategy is to transform a large-world network into a small world. Our exact results provide a general framework that connects two important fields: L\'evy navigation strategies and dynamics on complex networks.Comment: 6 pages, 3 figure

    An Inverse Method for Policy-Iteration Based Algorithms

    Full text link
    We present an extension of two policy-iteration based algorithms on weighted graphs (viz., Markov Decision Problems and Max-Plus Algebras). This extension allows us to solve the following inverse problem: considering the weights of the graph to be unknown constants or parameters, we suppose that a reference instantiation of those weights is given, and we aim at computing a constraint on the parameters under which an optimal policy for the reference instantiation is still optimal. The original algorithm is thus guaranteed to behave well around the reference instantiation, which provides us with some criteria of robustness. We present an application of both methods to simple examples. A prototype implementation has been done

    A point process framework for modeling electrical stimulation of the auditory nerve

    Full text link
    Model-based studies of auditory nerve responses to electrical stimulation can provide insight into the functioning of cochlear implants. Ideally, these studies can identify limitations in sound processing strategies and lead to improved methods for providing sound information to cochlear implant users. To accomplish this, models must accurately describe auditory nerve spiking while avoiding excessive complexity that would preclude large-scale simulations of populations of auditory nerve fibers and obscure insight into the mechanisms that influence neural encoding of sound information. In this spirit, we develop a point process model of the auditory nerve that provides a compact and accurate description of neural responses to electric stimulation. Inspired by the framework of generalized linear models, the proposed model consists of a cascade of linear and nonlinear stages. We show how each of these stages can be associated with biophysical mechanisms and related to models of neuronal dynamics. Moreover, we derive a semi-analytical procedure that uniquely determines each parameter in the model on the basis of fundamental statistics from recordings of single fiber responses to electric stimulation, including threshold, relative spread, jitter, and chronaxie. The model also accounts for refractory and summation effects that influence the responses of auditory nerve fibers to high pulse rate stimulation. Throughout, we compare model predictions to published physiological data and explain differences in auditory nerve responses to high and low pulse rate stimulation. We close by performing an ideal observer analysis of simulated spike trains in response to sinusoidally amplitude modulated stimuli and find that carrier pulse rate does not affect modulation detection thresholds.Comment: 1 title page, 27 manuscript pages, 14 figures, 1 table, 1 appendi
    corecore