16 research outputs found

    RNA atlas of human bacterial pathogens uncovers stress dynamics linked to infection

    Get PDF
    Bacterial processes necessary for adaption to stressful host environments are potential targets for new antimicrobials. Here, we report large-scale transcriptomic analyses of 32 human bacterial pathogens grown under 11 stress conditions mimicking human host environments. The potential relevance of the in vitro stress conditions and responses is supported by comparisons with available in vivo transcriptomes of clinically important pathogens. Calculation of a probability score enables comparative cross-microbial analyses of the stress responses, revealing common and unique regulatory responses to different stresses, as well as overlapping processes participating in different stress responses. We identify conserved and species-specific 'universal stress responders', that is, genes showing altered expression in multiple stress conditions. Non-coding RNAs are involved in a substantial proportion of the responses. The data are collected in a freely available, interactive online resource (PATHOgenex). Bacterial stress responses are potential targets for new antimicrobials. Here, Avican et al. present global transcriptomes for 32 bacterial pathogens grown under 11 stress conditions, and identify common and unique regulatory responses, as well as processes participating in different stress responses.Peer reviewe

    Persistent infection by Yersinia pseudotuberculosis

    No full text
    Enteropathogenic Yersinia species can infect many mammalian organs such as the small intestine, cecum, Peyer’s patches, liver, spleen, and lung and cause diseases that resemble a typhoid-like syndrome, as seen for other enteropathogens. We found that sublethal infection doses of Y. pseudotuberculosis gave rise to asymptomatic persistent infection in mice and identified the cecal lymphoid follicles as the primary site for colonization during persistence. Persistent Y. pseudotuberculosis is localized in the dome area, often in inflammatory lesions, as foci or as single cells, and also in neutrophil exudates in the cecal lumen. This new mouse model for bacterial persistence in cecum has potential as an investigative tool for deeper understanding of bacterial adaptation and host immune defense mechanisms during persistent infection. Here, we investigated the nature of the persistent infection established by Y. pseudotuberculosis in mouse cecal tissue using in vivo RNA-seq of bacteria during early and persistent stages of infection. Comparative analysis of the bacterial transcriptomes revealed that Y. pseudotuberculosis undergoes transcriptional reprogramming with drastic down-regulation of T3SS virulence genes during persistence in the cecum. At the persistent stage, the expression pattern in many respects resembles the pattern seen in vitro at 26°C. Genes that are up-regulated during persistence are genes involved in anaerobiosis, chemotaxis, and protection against oxidative and acidic stress, which indicates the influence of different environmental cues. We found that the Crp/CsrA/RovA regulatory cascades influence the pattern of bacterial gene expression during persistence. Furthermore, we show that ArcA, Fnr, FrdA, WrbA, RovA, and RfaH play critical roles in persistence. An extended investigation of the transcriptional regulator rfaH employing mouse infection studies, phenotypic characterizations, and RNA-seq transcriptomics analyses indicated that this gene product contributes to establishment of infection and confirmed that it regulates O-antigen biosynthesis genes in Y. pseudotuberculosis. The RNA-seq results also suggest that rfaH has a relatively global effect. Furthermore, we also found that the dynamics of the cecal tissue organization and microbial composition shows changes during different stages of the infection. Taken together, based on our findings, we speculate that this enteropathogen initiates infection by using its virulence factors in meeting the innate immune response in the cecal tissue. Later on, these factors lead to dysbiosis in the local microbiota and altered tissue organization. At later stages of the infection, the pathogen adapts to the environment in the cecum by reprogramming its transcriptome from a highly virulent mode to a more environmentally adaptable mode for survival and shedding. The in vivo transcriptomic analyses for essential genes during infections present strong candidates for novel targets for antimicrobials

    Persistent infection by Yersinia pseudotuberculosis

    No full text
    Enteropathogenic Yersinia species can infect many mammalian organs such as the small intestine, cecum, Peyer’s patches, liver, spleen, and lung and cause diseases that resemble a typhoid-like syndrome, as seen for other enteropathogens. We found that sublethal infection doses of Y. pseudotuberculosis gave rise to asymptomatic persistent infection in mice and identified the cecal lymphoid follicles as the primary site for colonization during persistence. Persistent Y. pseudotuberculosis is localized in the dome area, often in inflammatory lesions, as foci or as single cells, and also in neutrophil exudates in the cecal lumen. This new mouse model for bacterial persistence in cecum has potential as an investigative tool for deeper understanding of bacterial adaptation and host immune defense mechanisms during persistent infection. Here, we investigated the nature of the persistent infection established by Y. pseudotuberculosis in mouse cecal tissue using in vivo RNA-seq of bacteria during early and persistent stages of infection. Comparative analysis of the bacterial transcriptomes revealed that Y. pseudotuberculosis undergoes transcriptional reprogramming with drastic down-regulation of T3SS virulence genes during persistence in the cecum. At the persistent stage, the expression pattern in many respects resembles the pattern seen in vitro at 26°C. Genes that are up-regulated during persistence are genes involved in anaerobiosis, chemotaxis, and protection against oxidative and acidic stress, which indicates the influence of different environmental cues. We found that the Crp/CsrA/RovA regulatory cascades influence the pattern of bacterial gene expression during persistence. Furthermore, we show that ArcA, Fnr, FrdA, WrbA, RovA, and RfaH play critical roles in persistence. An extended investigation of the transcriptional regulator rfaH employing mouse infection studies, phenotypic characterizations, and RNA-seq transcriptomics analyses indicated that this gene product contributes to establishment of infection and confirmed that it regulates O-antigen biosynthesis genes in Y. pseudotuberculosis. The RNA-seq results also suggest that rfaH has a relatively global effect. Furthermore, we also found that the dynamics of the cecal tissue organization and microbial composition shows changes during different stages of the infection. Taken together, based on our findings, we speculate that this enteropathogen initiates infection by using its virulence factors in meeting the innate immune response in the cecal tissue. Later on, these factors lead to dysbiosis in the local microbiota and altered tissue organization. At later stages of the infection, the pathogen adapts to the environment in the cecum by reprogramming its transcriptome from a highly virulent mode to a more environmentally adaptable mode for survival and shedding. The in vivo transcriptomic analyses for essential genes during infections present strong candidates for novel targets for antimicrobials

    Co-PATHOgenex web application for assessing complex stress responses in pathogenic bacteria

    No full text
    Pathogenic bacteria encounter various stressors while residing in the host. They respond through intricate mechanisms of gene expression regulation, ensuring their survival and adaptation. Understanding how bacteria adapt to different stress conditions through regulatory processes of specific genes requires exploring complex transcriptional responses using gene co-expression networks. We employed a large transcriptome data set comprising 32 diverse human bacterial pathogens exposed to the same 11 host-mimicking stress conditions. Using the weighted gene co-expression network analysis algorithm, we generated bacterial gene co-expression networks. By associating modular eigengene expression with specific stress conditions, we identified gene co-expression modules and stress-specific stimulons, including genes with unique expression patterns under specific stress conditions. Suggesting a new potential role of the frm operon in responding to bile stress in enteropathogenic bacteria demonstrates the effectiveness of our approach. We also revealed the regulation of streptolysin S genes, involved in the production, processing, and export of streptolysin S, a toxin responsible for the beta-hemolytic phenotype of group A Streptococcus. In a comparative analysis of stress responses in three Escherichia coli strains from the core transcriptome, we revealed shared and unique expression patterns across the strains, offering insights into convergent and divergent stress responses. To help researchers perform similar analyses, we created the user-friendly web application Co-PATHOgenex. This tool aids in deepening our understanding of bacterial adaptation to stress conditions and in deciphering complex transcriptional responses of bacterial pathogens.IMPORTANCEUnveiling gene co-expression networks in bacterial pathogens has the potential for gaining insights into their adaptive strategies within the host environment. Here, we developed Co-PATHOgenex, an interactive and user-friendly web application that enables users to construct networks from gene co-expressions using custom-defined thresholds (https://avicanlab.shinyapps.io/copathogenex/). The incorporated search functions and visualizations within the tool simplify the usage and facilitate the interpretation of the analysis output. Co-PATHOgenex also includes stress stimulons for various bacterial species, which can help identify gene products not previously associated with a particular stress condition. Unveiling gene co-expression networks in bacterial pathogens has the potential for gaining insights into their adaptive strategies within the host environment. Here, we developed Co-PATHOgenex, an interactive and user-friendly web application that enables users to construct networks from gene co-expressions using custom-defined thresholds (https://avicanlab.shinyapps.io/copathogenex/). The incorporated search functions and visualizations within the tool simplify the usage and facilitate the interpretation of the analysis output. Co-PATHOgenex also includes stress stimulons for various bacterial species, which can help identify gene products not previously associated with a particular stress condition

    Spatiotemporal Variations in Growth Rate and Virulence Plasmid Copy Number during Yersinia pseudotuberculosis Infection

    No full text
    Pathogenic Yersinia spp. depend on the activity of a potent virulence plasmid-encoded ysc/yop type 3 secretion system (T3SS) to colonize hosts and cause disease. It was recently shown that Yersinia pseudotuberculosis upregulates the virulence plasmid copy number (PCN) during infection and that the resulting elevated gene dose of plasmid-encoded T3SS genes is essential for virulence. When and how this novel regulatory mechanism is deployed and regulates the replication of the virulence plasmid during infection is unknown. In the present study, we applied droplet digital PCR (ddPCR) to investigate the dynamics of Y. pseudotuberculosis virulence PCN variations and growth rates in infected mouse organs. We demonstrated that both PCN and growth varied in different tissues and over time throughout the course of infection, indicating that the bacteria adapted to discrete microenvironments during infection. The PCN was highest in Peyer's patches and cecum during the clonal invasive phase of the infection, while the highest growth rates were found in the draining mesenteric lymph nodes. In deeper, systemic organs, the PCN was lower and more modest growth rates were recorded. Our study indicates that increased gene dosage of the plasmid-encoded T3SS genes is most important early in the infection during invasion of the host. The described ddPCR approach will greatly simplify analyses of PCN, growth dynamics, and bacterial loads in infected tissues and will be readily applicable to other infection models

    Reprogramming of Yersinia from Virulent to Persistent Mode Revealed by Complex In Vivo RNA-seq Analysis

    Get PDF
    We recently found that Yersinia pseudotuberculosis can be used as a model of persistent bacterial infections. We performed in vivo RNA-seq of bacteria in small cecal tissue biopsies at early and persistent stages of infection to determine strategies associated with persistence. Comprehensive analysis of mixed RNA populations from infected tissues revealed that Y. pseudotuberculosis undergoes transcriptional reprogramming with drastic down-regulation of T3SS virulence genes during persistence when the pathogen resides within the cecum. At the persistent stage, the expression pattern in many respects resembles the pattern seen in vitro at 26oC, with for example, up-regulation of flagellar genes and invA. These findings are expected to have impact on future rationales to identify suitable bacterial targets for new antibiotics. Other genes that are up-regulated during persistence are genes involved in anaerobiosis, chemotaxis, and protection against oxidative and acidic stress, which indicates the influence of different environmental cues. We found that the Crp/CsrA/RovA regulatory cascades influence the pattern of bacterial gene expression during persistence. Furthermore, arcA, fnr, frdA, and wrbA play critical roles in persistence. Our findings suggest a model for the life cycle of this enteropathogen with reprogramming from a virulent to an adapted phenotype capable of persisting and spreading by fecal shedding

    Genome-Scale Mapping Reveals Complex Regulatory Activities of RpoN in Yersinia pseudotuberculosis

    No full text
    RpoN, an alternative sigma factor commonly known as σ54, is implicated in persistent stages of Yersinia pseudotuberculosis infections in which genes associated with this regulator are upregulated. We here combined phenotypic and genomic assays to provide insight into its role and function in this pathogen. RpoN was found essential for Y. pseudotuberculosis virulence in mice, and in vitro functional assays showed that it controls biofilm formation and motility. Mapping genome-wide associations of Y. pseudotuberculosis RpoN using chromatin immunoprecipitation coupled with next-generation sequencing identified an RpoN binding motif located at 103 inter- and intragenic sites on both sense and antisense strands. Deletion of rpoN had a large impact on gene expression, including downregulation of genes encoding proteins involved in flagellar assembly, chemotaxis, and quorum sensing. There were also clear indications of cross talk with other sigma factors, together with indirect effects due to altered expression of other regulators. Matching differential gene expression with locations of the binding sites implicated around 130 genes or operons potentially activated or repressed by RpoN. Mutagenesis of selected intergenic binding sites confirmed both positive and negative regulatory effects of RpoN binding. Corresponding mutations of intragenic sense sites had less impact on associated gene expression. Surprisingly, mutating intragenic sites on the antisense strand commonly reduced expression of genes carried by the corresponding sense strand

    Increased plasmid copy number is essential for Yersinia T3SS function and virulence.

    Get PDF
    Pathogenic bacteria have evolved numerous virulence mechanisms that are essential for establishing infections. The enterobacterium Yersinia uses a type III secretion system (T3SS) encoded by a 70-kilobase, low-copy, IncFII-class virulence plasmid. We report a novel virulence strategy in Y. pseudotuberculosis in which this pathogen up-regulates the plasmid copy number during infection. We found that an increased dose of plasmid-encoded genes is indispensable for virulence and substantially elevates the expression and function of the T3SS. Remarkably, we observed direct, tight coupling between plasmid replication and T3SS function. This regulatory pathway provides a framework for further exploration of the environmental sensing mechanisms of pathogenic bacteria

    <i>Y. pseudotuberculosis</i> infection alters the bacterial composition of the cecum.

    No full text
    <p>(A) Representative Bioanalyzer 2100 electrographs and associated gel pictures for replicates of <i>in vitro</i>-derived RNA samples (grown at 26°C and 37°C), <i>in vivo</i>-derived samples of early (isolated from mouse cecal tissue 2 dpi) and persistent infection (isolated from mouse cecal tissue 42 dpi), and uninfected samples (isolated from uninfected mouse cecal tissue). (B) The number of reads mapping to 16S rRNA from different bacteria in non-depleted <i>in vivo</i>-derived samples. Data represent the mean ± SD of the two replicates for each sample group. (C) Relative abundance of different bacterial phyla in samples according to reads mapped to the 16SMicrobial database. The proportions are given as the percent of bacterial phyla identified in specific samples.</p

    <i>Y. pseudotuberculosis</i> undergoes transcriptional reprogramming for adaption to persistence.

    No full text
    <p>(A) Comparison of genes up-regulated in <i>Y. pseudotuberculosis in vitro</i> at 26°C and 37°C compared to <i>in vivo</i> during early (2 dpi) and persistent (42 dpi) stages of infection. Similarities are shown with the number of genes up-regulated in both groups. (B) Functional annotation of <i>Y. pseudotuberculosis</i> genes up-regulated during early and persistent infection (KEGG pathway mapping tool). (C) Comparison of the <i>in vivo</i> gene expression profiles and the expression profiles of bacteria grown under anaerobic conditions <i>in vitro</i>. The analysis included genes up-regulated (>1.8-fold) during anaerobic or aerobic growth in both the exponential and stationary growth phase compared to genes up-regulated during early and persistent infection. Similarities are shown with the number of genes up-regulated in both groups.</p
    corecore