1,302 research outputs found

    Mean field approaches to the totally asymmetric exclusion process with quenched disorder and large particles

    Full text link
    The process of protein synthesis in biological systems resembles a one dimensional driven lattice gas in which the particles (ribosomes) have spatial extent, covering more than one lattice site. Realistic, nonuniform gene sequences lead to quenched disorder in the particle hopping rates. We study the totally asymmetric exclusion process with large particles and quenched disorder via several mean field approaches and compare the mean field results with Monte Carlo simulations. Mean field equations obtained from the literature are found to be reasonably effective in describing this system. A numerical technique is developed for computing the particle current rapidly. The mean field approach is extended to include two-point correlations between adjacent sites. The two-point results are found to match Monte Carlo simulations more closely

    The near-IR Mbh-L and Mbh-n relations

    Get PDF
    We present near-infrared (near-IR) surface photometry (2D profiling) for a sample of 29 nearby galaxies for which supermassive black hole (SMBH) masses are constrained. The data are derived from the UKIDSS-LAS representing a significant improvement in image quality and depth over previous studies based on Two Micron All Sky Survey data. We derive the spheroid luminosity and spheroid Sérsic index for each galaxy with galfit3 and use these data to construct SMBH mass-bulge luminosity (Mbh-L) and SMBH-Sérsic index (Mbh-n) relations. The best-fitting K-band relation for elliptical and disc galaxies is log (Mbh/M⊙) =−0.36(±0.03)(MK+ 18) + 6.17(±0.16), with an intrinsic scatter of 0.4+0.09−0.06 dex, whilst for elliptical galaxies we find log (Mbh/M⊙) =−0.42(±0.06)(MK+ 22) + 7.5(±0.15), with an intrinsic scatter of 0.31+0.087−0.047 dex. Our revised Mbh-L relation agrees closely with the previous near-IR constraint by Graham. The lack of improvement in the intrinsic scatter in moving to higher quality near-IR data suggests that the SMBH relations are not currently limited by the quality of the imaging data but is either intrinsic or a result of uncertainty in the precise number of required components required in the profiling process. Contrary to expectation, a relation between SMBH mass and the Sérsic index was not found at near-IR wavelengths. This latter outcome is believed to be explained by the generic inconsistencies between 1D and 2D galaxy profiling which are currently under further investigatio

    Implementation of Rare Isotopologues into Machine Learning of the Chemical Inventory of the Solar-Type Protostellar Source IRAS 16293-2422

    Full text link
    Machine learning techniques have been previously used to model and predict column densities in the TMC-1 dark molecular cloud. In interstellar sources further along the path of star formation, such as those where a protostar itself has been formed, the chemistry is known to be drastically different from that of largely quiescent dark clouds. To that end, we have tested the ability of various machine learning models to fit the column densities of the molecules detected in source B of the Class 0 protostellar binary IRAS 16293-2422. By including a simple encoding of isotopic composition in our molecular feature vectors, we also examine for the first time how well these models can replicate the isotopic ratios. Finally, we report the predicted column densities of the chemically relevant molecules that may be excellent targets for radioastronomical detection in IRAS 16293-2422B.Comment: Accepted for publication in Digital Discovery. 18 pages, 8 figures, 5 table

    Survival of Long-Lived Plasma Cells (LLPC): Piecing Together the Puzzle

    Get PDF
    Durable humoral immunity is dependent upon the generation of antigen-specific antibody titers, produced by non-proliferating bone marrow resident long-lived plasma cells (LLPC). Longevity is the hallmark of LLPC, but why and how they survive and function for years after antigen exposure is only beginning to be understood. LLPC are not intrinsically long-lived; they require continuous signals from the LLPC niche to survive. Signals unique to LLPC survival (vs. PC survival in general) most notably include those that upregulate the anti-apoptotic factor Mcl-1 and activation of the CD28 receptor expressed on LLPC. Other potential factors include expression of BCMA, upregulation of the transcription factor ZBTB20, and upregulation of the enzyme ENPP1. Metabolic fitness is another key component of LLPC longevity, facilitating the diversion of glucose to generate pyruvate during times of stress to facilitate long term survival. A third major component of LLPC survival is the microenvironment/LLPC niche itself. Cellular partners such as stromal cells, dendritic cells, and T regulatory cells establish a niche for LLPC and drive survival signaling by expressing ligands such as CD80/CD86 for CD28 and producing soluble and stromal factors that contribute to LLPC longevity. These findings have led to the current paradigm wherein both intrinsic and extrinsic mechanisms are required for the survival of LLPC. Here we outline this diverse network of signals and highlight the mechanisms thought to regulate and promote the survival of LLPC. Understanding this network of signals has direct implications in increasing our basic understanding of plasma cell biology, but also in vaccine and therapeutic drug development to address the pathologies that can arise from this subset

    Galapagos-2/Galfitm/Gama – Multi-wavelength measurement of galaxy structure: Separating the properties of spheroid and disk components in modern surveys

    Get PDF
    Aims. We present the capabilities of GALAPAGOS-2 and GALFITM in the context of fitting two-component profiles – bulge–disk decompositions – to galaxies, with the ultimate goal of providing complete multi-band, multi-component fitting of large samples of galaxies in future surveys. We also release both the code and the fit results to 234 239 objects from the DR3 of the GAMA survey, a sample significantly deeper than in previous works. Methods. We use stringent tests on both simulated and real data, as well as comparison to public catalogues to evaluate the advantages of using multi-band over single-band data. Results. We show that multi-band fitting using GALFITM provides significant advantages when trying to decompose galaxies into their individual constituents, as more data are being used, by effectively being able to use the colour information buried in the individual exposures to its advantage. Using simulated data, we find that multi-band fitting significantly reduces deviations from the real parameter values, allows component sizes and Sérsic indices to be recovered more accurately, and – by design – constrains the band-to-band variations of these parameters to more physical values. On both simulated and real data, we confirm that the spectral energy distributions (SEDs) of the two main components can be recovered to fainter magnitudes compared to using single-band fitting, which tends to recover ‘disks’ and ‘bulges’ with – on average – identical SEDs when the galaxies become too faint, instead of the different SEDs they truly have. By comparing our results to those provided by other fitting codes, we confirm that they agree in general, but measurement errors can be significantly reduced by using the multi-band tools developed by the MEGAMORPH project. Conclusions. We conclude that the multi-band fitting employed by GALAPAGOS-2 and GALFITM significantly improves the accuracy of structural galaxy parameters and enables much larger samples to be be used in a scientific analysis

    Galaxy and mass assembly (GAMA) : The wavelength-dependent sizes and profiles of galaxies revealed by MegaMorph

    Get PDF
    We investigate the relationship between colour and structure within galaxies using a large, volume-limited sample of bright, low-redshift galaxies with optical-near-infrared imaging from the Galaxy AndMass Assembly survey.We fit single-component,wavelength-dependent, elliptical Sérsic models to all passbands simultaneously, using software developed by the MegaMorph project. Dividing our sample by n and colour, the recovered wavelength variations in effective radius (Re) and Sérsic index (n) reveal the internal structure, and hence formation history, of different types of galaxies. All these trends depend on n; some have an additional dependence on galaxy colour. Late-type galaxies (nr 2.5), even though they maintain constant n with wavelength, revealing that ellipticals are a superimposition of different stellar populations associated with multiple collapse and merging events. Processes leading to structures with larger Re must be associated with lower metallicity or younger stellar populations. This appears to rule out the formation of young cores through dissipative gas accretion as an important mechanism in the recent lives of luminous elliptical galaxies.Peer reviewe

    Galaxy And Mass Assembly (GAMA) : refining the local galaxy merger rate using morphological information

    Get PDF
    KRVS acknowledges the Science and Technology Facilities Council (STFC) for providing funding for this project, as well as the Government of Catalonia for a research travel grant (ref. 2010 BE-00268) to begin this project at the University of Nottingham. PN acknowledges the support of the Royal Society through the award of a University Research Fellowship and the European Research Council, through receipt of a Starting Grant (DEGAS-259586).We use the Galaxy And Mass Assembly (GAMA) survey to measure the local Universe mass-dependent merger fraction and merger rate using galaxy pairs and the CAS (concentration, asymmetry, and smoothness) structural method, which identifies highly asymmetric merger candidate galaxies. Our goals are to determine which types of mergers produce highly asymmetrical galaxies and to provide a new measurement of the local galaxy major merger rate. We examine galaxy pairs at stellar mass limits down to M* = 108 M⊙ with mass ratios of 4:1) the lower mass companion becomes highly asymmetric, whereas the larger galaxy is much less affected. The fraction of highly asymmetric paired galaxies which have a major merger companion is highest for the most massive galaxies and drops progressively with decreasing mass. We calculate that the mass-dependent major merger fraction is fairly constant at ∼1.3–2 per cent within 109.5 < M* < 1011.5 M⊙, and increases to ∼4 per cent at lower masses. When the observability time-scales are taken into consideration, the major merger rate is found to approximately triple over the mass range we consider. The total comoving volume major merger rate over the range 108.0 < M* < 1011.5 M⊙ is (1.2 ± 0.5) × 10−3 h370 Mpc−3 Gyr−1.Publisher PDFPeer reviewe
    • …
    corecore