82 research outputs found

    The Galaxy Stellar Mass Function and Low Surface Brightness Galaxies from Core-Collapse Supernovae

    Get PDF
    We introduce a method for producing a galaxy sample unbiased by surface brightness and stellar mass, by selecting star-forming galaxies via the positions of core-collapse supernovae (CCSNe). Whilst matching ∼\sim2400 supernovae from the SDSS-II Supernova Survey to their host galaxies using IAC Stripe 82 legacy coadded imaging, we find ∼\sim150 previously unidentified low surface brightness galaxies (LSBGs). Using a sub-sample of ∼\sim900 CCSNe, we infer CCSN-rate and star-formation rate densities as a function of galaxy stellar mass, and the star-forming galaxy stellar mass function. Resultant star-forming galaxy number densities are found to increase following a power-law down to our low mass limit of ∼106.4\sim10^{6.4} M⊙_{\odot} by a single Schechter function with a faint-end slope of α=−1.41\alpha = -1.41. Number densities are consistent with those found by the EAGLE simulations invoking a Λ\Lambda-CDM cosmology. Overcoming surface brightness and stellar mass biases is important for assessment of the sub-structure problem. In order to estimate galaxy stellar masses, a new code for the calculation of galaxy photometric redshifts, zMedIC, is also presented, and shown to be particularly useful for small samples of galaxies

    Reproducible kk-means clustering in galaxy feature data from the GAMA survey

    Get PDF
    A fundamental bimodality of galaxies in the local Universe is apparent in many of the features used to describe them. Multiple sub-populations exist within this framework, each representing galaxies following distinct evolutionary pathways. Accurately identifying and characterising these sub-populations requires that a large number of galaxy features be analysed simultaneously. Future galaxy surveys such as LSST and Euclid will yield data volumes for which traditional approaches to galaxy classification will become unfeasible. To address this, we apply a robust kk-means unsupervised clustering method to feature data derived from a sample of 7338 local-Universe galaxies selected from the Galaxy And Mass Assembly (GAMA) survey. This allows us to partition our sample into kk clusters without the need for training on pre-labelled data, facilitating a full census of our high dimensionality feature space and guarding against stochastic effects. We find that the local galaxy population natively splits into 22, 33, 55 and a maximum of 66 sub-populations, with each corresponding to a distinct ongoing evolutionary mechanism. Notably, the impact of the local environment appears strongly linked with the evolution of low-mass (M∗<1010M_{*} < 10^{10} M⊙_{\odot}) galaxies, with more massive systems appearing to evolve more passively from the blue cloud onto the red sequence. With a typical run time of ∼3\sim3 minutes per value of kk for our galaxy sample, we show how kk-means unsupervised clustering is an ideal tool for future analysis of large extragalactic datasets, being scalable, adaptable, and providing crucial insight into the fundamental properties of the local galaxy population

    Exploring Relations Between BCG and Cluster Properties in the SPectroscopic IDentification of eROSITA Sources Survey from 0.05<z<0.30.05 < z < 0.3

    Get PDF
    We present a sample of 329 low to intermediate redshift (0.05<z<0.30.05 < z < 0.3) brightest cluster galaxies (BCGs) in X-ray selected clusters from the SPectroscopic IDentification of eRosita Sources (SPIDERS) survey, a spectroscopic survey within Sloan Digital Sky Survey-IV (SDSS-IV). We define our BCGs by simultaneous consideration of legacy X-ray data from ROSAT, maximum likelihood outputs from an optical cluster-finder algorithm and visual inspection. Using SDSS imaging data, we fit S\'ersic profiles to our BCGs in three bands (\textit{g}, \textit{r}, \textit{i}) with \textsc{SIGMA}, a \textsc{GALFIT}-based software wrapper. We examine the reliability of our fits by running our pipeline on ∼104{\sim}10^{4} psf-convolved model profiles injected into 8 random cluster fields, we then use the results of this analysis to create a robust subsample of 198 BCGs. We outline three cluster properties of interest: overall cluster X-ray luminosity (LXL_{X}), cluster richness as estimated by \textsc{redMaPPer} (λ \lambda ) and cluster halo mass (M200M_{200}), which is estimated via velocity dispersion. In general, there are significant correlations with BCG stellar mass between all three environmental properties, but no significant trends arise with either S\'ersic index or effective radius. There is no major environmental dependence on the strength of the relation between effective radius and BCG stellar mass. Stellar mass therefore arises as the most important factor governing BCG morphology. Our results indicate that our sample consists of a large number of relaxed, mature clusters containing broadly homogeneous BCGs up to z∼0.3z \sim 0.3, suggesting that there is little evidence for much ongoing structural evolution for BCGs in these systems

    Galaxy And Mass Assembly (GAMA): trends in galaxy colours, morphology, and stellar populations with large-scale structure, group, and pair environments

    Get PDF
    We explore trends in galaxy properties with Mpc-scale structures using catalogues of environment and large scale structure from the Galaxy And Mass Assembly (GAMA) survey. Existing GAMA catalogues of large scale structure, group and pair membership allow us to construct galaxy stellar mass functions for different environmental types. To avoid simply extracting the known underlying correlations between galaxy properties and stellar mass, we create a mass matched sample of galaxies with stellar masses between 9.5≤logM∗/h−2M⊙≤11 for each environmental population. Using these samples, we show that mass normalised galaxies in different large scale environments have similar energy outputs, u−r colours, luminosities, and morphologies. Extending our analysis to group and pair environments, we show galaxies that are not in groups or pairs exhibit similar characteristics to each other regardless of broader environment. For our mass controlled sample, we fail to see a strong dependence of S\'{e}rsic index or galaxy luminosity on halo mass, but do find that it correlates very strongly with colour. Repeating our analysis for galaxies that have not been mass controlled introduces and amplifies trends in the properties of galaxies in pairs, groups, and large scale structure, indicating that stellar mass is the most important predictor of the galaxy properties we examine, as opposed to environmental classifications

    Galaxy and Mass Assembly (GAMA): maximum likelihood determination of the luminosity function and its evolution

    Get PDF
    We describe modifications to the joint stepwise maximum likelihood method of Cole (2011) in order to simultaneously fit the GAMA-II galaxy luminosity function (LF), corrected for radial density variations, and its evolution with redshift. The whole sample is reasonably well-fit with luminosity (Qe) and density (Pe) evolution parameters Qe, Pe = 1.0, 1.0 but with significant degeneracies characterized by Qe = 1.4 - 0.4Pe. Blue galaxies exhibit larger luminosity density evolution than red galaxies, as expected. We present the evolution-corrected r-band LF for the whole sample and for blue and red sub-samples, using both Petrosian and Sersic magnitudes. Petrosian magnitudes miss a substantial fraction of the flux of de Vaucouleurs profile galaxies: the Sersic LF is substantially higher than the Petrosian LF at the bright end

    Galaxy And Mass Assembly (GAMA): the unimodal nature of the dwarf galaxy population

    Get PDF
    In this paper we aim to (i) test the number of statistically distinct classes required to classify the local galaxy population, and, (ii) identify the differences in the physical and star formation properties of visually-distinct galaxies. To accomplish this, we analyse the structural parameters (effective radius (Reff ), effective surface brightness within Reff (hμie), central surface brightness (μ0), and S´ersic index (n)), obtained by fitting the light profile of 432 galaxies (0.002 < z 6 0.02; Viking Z-band), and their spectral energy distribution using multi-band photometry in 18 broadbands to obtain the stellar mass (M ), the star formation rate (SFR), the specific SFR (sSFR) and the dust mass (Mdust), respectively. We show that visually distinct, star-forming dwarf galaxies (irregulars, blue spheroids and low surface brightness galaxies) form a unimodal population in a parameter space mapped by hμie, μ0, n, Reff , SFR, sSFR, M , Mdust and (g − i). The SFR and sSFR distribution of passively evolving (dwarf) ellipticals on the other hand, statistically distinguish them from other galaxies with similar luminosity, while the giant galaxies clearly segregate into starforming spirals and passive lenticulars. We therefore suggest that the morphology classification scheme(s) used in literature for dwarf galaxies only reflect the observational differences based on luminosity and surface brightness among the apparent distinct classes, rather than any physical differences between them

    Galaxy And Mass Assembly (GAMA): the unimodal nature of the dwarf galaxy population

    Get PDF
    In this paper we aim to (i) test the number of statistically distinct classes required to classify the local galaxy population, and, (ii) identify the differences in the physical and star formation properties of visually-distinct galaxies. To accomplish this, we analyse the structural parameters (effective radius (Reff ), effective surface brightness within Reff (hμie), central surface brightness (μ0), and S´ersic index (n)), obtained by fitting the light profile of 432 galaxies (0.002 < z 6 0.02; Viking Z-band), and their spectral energy distribution using multi-band photometry in 18 broadbands to obtain the stellar mass (M ), the star formation rate (SFR), the specific SFR (sSFR) and the dust mass (Mdust), respectively. We show that visually distinct, star-forming dwarf galaxies (irregulars, blue spheroids and low surface brightness galaxies) form a unimodal population in a parameter space mapped by hμie, μ0, n, Reff , SFR, sSFR, M , Mdust and (g − i). The SFR and sSFR distribution of passively evolving (dwarf) ellipticals on the other hand, statistically distinguish them from other galaxies with similar luminosity, while the giant galaxies clearly segregate into starforming spirals and passive lenticulars. We therefore suggest that the morphology classification scheme(s) used in literature for dwarf galaxies only reflect the observational differences based on luminosity and surface brightness among the apparent distinct classes, rather than any physical differences between them

    Galaxy And Mass Assembly (GAMA): the wavelength dependence of galaxy structure versus redshift and luminosity

    Get PDF
    We study how the sizes and radial profiles of galaxies vary with wavelength, by fitting Sersic functions simultaneously to imaging in nine optical and near-infrared bands. To quantify the wavelength dependence of effective radius we use the ratio, R\mathcal{R}, of measurements in two restframe bands. The dependence of Sersic index on wavelength, N\mathcal{N}, is computed correspondingly. Vulcani et al. (2014) have demonstrated that different galaxy populations present sharply contrasting behaviour in terms of R\mathcal{R} and N\mathcal{N}. Here we study the luminosity dependence of this result. We find that at higher luminosities, early-type galaxies display a more substantial decrease in effective radius with wavelength, whereas late-types present a more pronounced increase in Sersic index. The structural contrast between types thus increases with luminosity. By considering samples at different redshifts, we demonstrate that lower data quality reduces the apparent difference between the main galaxy populations. However, our conclusions remain robust to this effect. We show that accounting for different redshift and luminosity selections partly reconciles the size variation measured by Vulcani et al. with the weaker trends found by other recent studies. Dividing galaxies by visual morphology confirms the behaviour inferred using morphological proxies, although the sample size is greatly reduced. Finally, we demonstrate that varying dust opacity and disc inclination can account for features of the joint distribution of R\mathcal{R} and N\mathcal{N} for late-type galaxies. However, dust does not appear to explain the highest values of R\mathcal{R} and N\mathcal{N}. The bulge-disc nature of galaxies must also contribute to the wavelength-dependence of their structure

    Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley

    Get PDF
    We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and onto the red sequence. We select GAMA survey galaxies with 10.25<log(M∗/M⊙)<10.7510.25<{\rm log}(M_*/M_\odot)<10.75 and z<0.2z<0.2 classified according to their intrinsic u∗−r∗u^*-r^* colour. From single component S\'ersic fits, we find that the stellar mass-sensitive K−K-band profiles of red and green galaxy populations are very similar, while g−g-band profiles indicate more disk-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disk components and that the blue to red evolution is driven by colour change in the disk. Together, these strongly suggest that galaxies evolve from blue to red through secular disk fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical timescale for traversing the green valley ∼1−2\sim 1-2~Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a r\^ole in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disk galaxies that are insufficiently supplied with gas to maintain previous levels of disk star formation, eventually attaining passive colours. No single event is needed quench their star formation

    Galaxy and Mass Assembly (GAMA): Accurate number densities and environments of massive ultracompact galaxies at 0.02 < z < 0.3

    Get PDF
    Massive Ultracompact Galaxies (MUGs) are common at z=2-3, but very rare in the nearby Universe. Simulations predict that the few surviving MUGs should reside in galaxy clusters, whose large relative velocities prevent them from merging, thus maintaining their original properties (namely stellar populations, masses, sizes and dynamical state). We take advantage of the high-completeness, large-area spectroscopic GAMA survey, complementing it with deeper imaging from the KiDS and VIKING surveys. We find a set of 22 bona-fide MUGs, defined as having high stellar mass (>8x10^10 M_Sun) and compact size (R_e ~ 10^10 M_Sun Kpc^-2). Interestingly, a large fraction feature close companions -- at least in projection -- suggesting that many (but not all) live in the central regions of groups. Halo masses show these galaxies inhabit average-mass groups. As MUGs are found to be almost equally distributed among environments of different masses, their relative fraction is higher in more massive overdensities, matching the expectations that some of these galaxies fell in these regions at early times. However, there must be another channel leading some of these galaxies to an abnormally low merger history because our sample shows a number of objects that do not inhabit particularly dense environments. (abridged
    • …
    corecore