36 research outputs found
Metapopulation dominance and genomic-island acquisition of Bradyrhizobium with superior catabolic capabilities
Root nodule-forming rhizobia exhibit a bipartite lifestyle, replicating in soil and also within plant cells where they fix nitrogen for legume hosts. Host control models posit that legume hosts act as a predominant selective force on rhizobia, but few studies have examined rhizobial fitness in natural populations. Here, we genotyped and phenotyped Bradyrhizobium isolates across more than 800 km of the native Acmispon strigosus host range. We sequenced chromosomal genes expressed under free-living conditions and accessory symbiosis loci expressed in planta and encoded on an integrated ‘symbiosis island’ (SI). We uncovered a massive clonal expansion restricted to the Bradyrhizobium chromosome, with a single chromosomal haplotype dominating populations, ranging more than 700 km, and acquiring 42 divergent SI haplotypes, none of which were spatially widespread. For focal genotypes, we quantified utilization of 190 sole-carbon sources relevant to soil fitness. Chromosomal haplotypes that were both widespread and dominant exhibited superior growth on diverse carbon sources, whereas these patterns were not mirrored among SI haplotypes. Abundance, spatial range and catabolic superiority of chromosomal, but not symbiosis genotypes suggests that fitness in the soil environment, rather than symbiosis with hosts, might be the key driver of Bradyrhizobium dominance
Metapopulation dominance and genomic-island acquisition of Bradyrhizobium with superior catabolic capabilities
Root nodule-forming rhizobia exhibit a bipartite lifestyle, replicating in soil and also within plant cells where they fix nitrogen for legume hosts. Host control models posit that legume hosts act as a predominant selective force on rhizobia, but few studies have examined rhizobial fitness in natural populations. Here, we genotyped and phenotyped Bradyrhizobium isolates across more than 800 km of the native Acmispon strigosus host range. We sequenced chromosomal genes expressed under free-living conditions and accessory symbiosis loci expressed in planta and encoded on an integrated ‘symbiosis island’ (SI). We uncovered a massive clonal expansion restricted to the Bradyrhizobium chromosome, with a single chromosomal haplotype dominating populations, ranging more than 700 km, and acquiring 42 divergent SI haplotypes, none of which were spatially widespread. For focal genotypes, we quantified utilization of 190 sole-carbon sources relevant to soil fitness. Chromosomal haplotypes that were both widespread and dominant exhibited superior growth on diverse carbon sources, whereas these patterns were not mirrored among SI haplotypes. Abundance, spatial range and catabolic superiority of chromosomal, but not symbiosis genotypes suggests that fitness in the soil environment, rather than symbiosis with hosts, might be the key driver of Bradyrhizobium dominance
Recommended from our members
Recurrent mutualism breakdown events in a legume rhizobia metapopulation.
Bacterial mutualists generate major fitness benefits for eukaryotes, reshaping the host phenotype and its interactions with the environment. Yet, microbial mutualist populations are predicted to generate mutants that defect from providing costly services to hosts while maintaining the capacity to exploit host resources. Here, we examined the mutualist service of symbiotic nitrogen fixation in a metapopulation of root-nodulating Bradyrhizobium spp. that associate with the native legume Acmispon strigosus. We quantified mutualism traits of 85 Bradyrhizobium isolates gathered from a 700 km transect in California spanning 10 sampled A. strigosus populations. We clonally inoculated each Bradyrhizobium isolate onto A. strigosus hosts and quantified nodulation capacity and net effects of infection, including host growth and isotopic nitrogen concentration. Six Bradyrhizobium isolates from five populations were categorized as ineffective because they formed nodules but did not enhance host growth via nitrogen fixation. Six additional isolates from three populations failed to form root nodules. Phylogenetic reconstruction inferred two types of mutualism breakdown, including three to four independent losses of effectiveness and five losses of nodulation capacity on A. strigosus. The evolutionary and genomic drivers of these mutualism breakdown events remain poorly understood
Host investment into symbiosis varies among genotypes of the legume Acmispon strigosus, but host sanctions are uniform.
Efficient host control predicts the extirpation of ineffective symbionts, but they are nonetheless widespread in nature. We tested three hypotheses for the maintenance of symbiotic variation in rhizobia that associate with a native legume: partner mismatch between host and symbiont, such that symbiont effectiveness varies with host genotype; resource satiation, whereby extrinsic sources of nutrients relax host control; and variation in host control among host genotypes. We inoculated Acmispon strigosus from six populations with three Bradyrhizobium strains that vary in symbiotic effectiveness on sympatric hosts. We measured proxies of host and symbiont fitness in single- and co-inoculations under fertilization treatments of zero added nitrogen (N) and near-growth-saturating N. We examined two components of host control: 'host investment' into nodule size during single- and co-inoculations, and 'host sanctions' against less effective strains during co-inoculations. The Bradyrhizobium strains displayed conserved growth effects on hosts, and host control did not decline under experimental fertilization. Host sanctions were robust in all hosts, but host lines from different populations varied significantly in measures of host investment in both single- and co-inoculation experiments. Variation in host investment could promote variation in symbiotic effectiveness and prevent the extinction of ineffective Bradyrhizobium from natural populations
Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments
Agricultural land management, such as fertilization, liming, and tillage affects soil properties, including pH, organic matter content, nitrification rates, and the microbial community. Three different study sites were used to identify microorganisms that correlate with agricultural land use and to determine which factors regulate the relative abundance of the microbial signatures of the agricultural land-use. The three sites included in this study are the Broadbalk Experiment at Rothamsted Research, UK, the Everglades Agricultural Area, Florida, USA, and the Kellogg Biological Station, Michigan, USA. The effects of agricultural management on the abundance and diversity of bacteria and archaea were determined using high throughput, barcoded 16S rRNA sequencing. In addition, the relative abundance of these organisms was correlated with soil features. Two groups of microorganisms involved in nitrogen cycle were highly correlated with land use at all three sites. The ammonia oxidizing-archaea, dominated by Ca. Nitrososphaera, were positively correlated with agriculture while a ubiquitous group of soil bacteria closely related to the diazotrophic symbiont, Bradyrhizobium, was negatively correlated with agricultural management. Analysis of successional plots showed that the abundance of ammonia oxidizing-archaea declined and the abundance of bradyrhizobia increased with time away from agriculture. This observation suggests that the effect of agriculture on the relative abundance of these genera is reversible. Soil pH and NH(3) concentrations were positively correlated with archaeal abundance but negatively correlated with the abundance of Bradyrhizobium. The high correlations of Ca. Nitrososphaera and Bradyrhizobium abundances with agricultural management at three long-term experiments with different edaphoclimatic conditions allowed us to suggest these two genera as signature microorganisms for agricultural land use
Recommended from our members
Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments
Agricultural land management, such as fertilization, liming, and tillage affects soil properties, including pH, organic matter content, nitrification rates, and the microbial community. Three different study sites were used to identify microorganisms that correlate with agricultural land use and to determine which factors regulate the relative abundance of the microbial signatures of the agricultural land-use. The three sites included in this study are the Broadbalk Experiment at Rothamsted Research, UK, the Everglades Agricultural Area, Florida, USA, and the Kellogg Biological Station, Michigan, USA. The effects of agricultural management on the abundance and diversity of bacteria and archaea were determined using high throughput, barcoded 16S rRNA sequencing. In addition, the relative abundance of these organisms was correlated with soil features. Two groups of microorganisms involved in nitrogen cycle were highly correlated with land use at all three sites. The ammonia oxidizing-archaea, dominated by Ca. Nitrososphaera, were positively correlated with agriculture while a ubiquitous group of soil bacteria closely related to the diazotrophic symbiont, Bradyrhizobium, was negatively correlated with agricultural management. Analysis of successional plots showed that the abundance of ammonia oxidizing-archaea declined and the abundance of bradyrhizobia increased with time away from agriculture. This observation suggests that the effect of agriculture on the relative abundance of these genera is reversible. Soil pH and NH₃ concentrations were positively correlated with archaeal abundance but negatively correlated with the abundance of Bradyrhizobium. The high correlations of Ca. Nitrososphaera and Bradyrhizobium abundances with agricultural management at three long-term experiments with different edaphoclimatic conditions allowed us to suggest these two genera as signature microorganisms for agricultural land use.This is the publisher’s final pdf. The published article is copyrighted by the author(s) and published by the Frontiers Research Foundation. The published article can be found at: http://www.frontiersin.org/Microbiology.Keywords: Ca. Nitrososphaera, Agricultural land use, Bradyrhizobium, Ammonia-oxidizing archaea, Soil properties, DiazotrophsKeywords: Ca. Nitrososphaera, Agricultural land use, Bradyrhizobium, Ammonia-oxidizing archaea, Soil properties, Diazotroph